Относительность в теориях физики

Материал из Циклопедии
Перейти к навигации Перейти к поиску

Относительность в теориях физики описывает различные формы применения категории относительность, принципа относительности, теории относительности для описания физических систем.

Введение[править]

Первичной задачей любой физической теории является описание явлений в рамках какой-либо системы, исходя из знания этих явлений в других подобных системах. Переход из одной физической системы в другую можно осуществить с помощью соответствующего принципа относительности, который должен позволять предсказывать величины и понятия одной системы через величины и понятия в аналогичной системе, не совпадающей с первой. Термин «относительность» в данном случае предполагает, что явления в каждой рассматриваемой системе не абсолютны, не единичны, не уникальны, они могут быть повторены в другой системе при соответствующих условиях с выполнением тех же физических законов. Другой смысл термина «относительность» — это соотносительность, возможность преобразования знаний об одной системе в знание о другой системе по известному правилу.

В определённом смысле относительность пересекается с подобием, но отлична от неё. В теориях подобия явления в разных системах обычно связываются по одному или двум параметрам, что не может дать полной и точной картины событий в подобной системе, имеет место лишь ограниченная инвариантность рассматриваемых явлений в каком-либо отношении.

Применение соответствующего принципа относительности позволяет добиться более полной инвариантности за счёт использования большего количества параметров, которыми часто становятся пространственные координаты и время. В точных науках переход от принципа относительности к теории относительности осуществляется не только на основе качественной формулировки, но и сопровождается математическими преобразованиями. Типичным примером является теория относительности Галилея, когда механические явления в любых инерциальных системах могут быть предсказаны, исходя из их вида в неподвижной системе.

Независимость временных и пространственных координат[править]

Каждая система отсчёта должна быть снабжена хотя бы одними часами и размечена сеткой пространственных координат. Очевидно, что физические явления в системе отсчёта не должны измениться, если при том же самом отсчёте времени используются разные системы координат (например, декартовые или сферические). В данном случае имеет место относительность выбора систем отсчёта координат по отношению к системе отсчёта времени — при любой комбинации этих систем полученные системы отсчёта полагаются эквивалентными.

Относительность Галилея[править]

Согласно принципу относительности Галилея, механические явления в инерциальных системах отсчёта протекают одинаково и не зависят от состояний движения или покоя. Таким образом, инерциальные системы отсчёта оказываются равноправными и неразличимыми при выполнении механических экспериментов. С другой стороны, механические явления описываются соответствующими физическими величинами и законами. Поскольку физические величины являются функциями трёх пространственных координат и времени, то для выполнения инвариантности физических законов в каждой инерциальной системе необходимо выполнение определённого закона преобразования координат и времени между инерциальными системами. В случае использования подходящего преобразования как физические величины, так и физические законы не меняют свой вид после замены координат и времени одной системы на координаты и время другой системы. Преобразования Галилея в простейшем случае, когда оси координат двух систем отсчёта параллельны друг другу, имеют следующий вид:

, , , .

Здесь штрихованные пространственные координаты и время задают некоторую точку пространства-времени и принадлежат одной инерциальной системе отсчёта, а нештрихованные координаты и время другой инерциальной системы отсчёта со своей стороны определяют эту же самую точку пространства-времени, в которой требуется находить физические величины и применять физические законы. Под величиной подразумевается относительная скорость движения нештрихованной системы отсчёта относительно штрихованной системы отсчёта, которая направлена вдоль оси . Из преобразований видно, что с целью упрощения сделан такой выбор систем отсчёта, что в начальный момент времени начала координат обеих систем отсчёта совпадают.

Специальная теория относительности[править]

Специальная теория относительности или СТО включает в себя относительность Галилея. СТО справедлива не только для механических, но и для остальных физических явлений, в первую очередь для электромагнитных явлений. Пространственно-временные измерения в СТО производятся с помощью света или электромагнитных волн. Поскольку координаты и время являются основными параметрами преобразований в теориях относительности, то из соответствия СТО законам электромагнетизма вытекает соответствие СТО теориям относительности, которые описывают явления, даже и не связанные с электромагнетизмом. Точность, с которой описываются любые физические явления на базе координат и времени в СТО, соответствует той точности, с которой производятся измерения координат и времени в СТО. Расширенный на все физические явления принцип относительности Галилея называется принципом относительности Эйнштейна. В качестве преобразований СТО выступают преобразования Лоренца координат и времени. При тех же условиях, что и в описанных выше преобразованиях Галилея, преобразование Лоренца имеет вид:

,

где  — скорость света в вакууме.

Пространством СТО является пространство Минковского, включающее в себя обычные трёхмерные пространственные координаты и временную координату, умноженную на скорость света для сохранения размерности.

Общая теория относительности[править]

Среди всех имеющихся систем отсчёта инерциальные системы занимают относительно небольшое место. В то же время существует множество таких систем, в которых невозможно правильно предсказать явления, исходя только из законов этих явлений в инерциальных системах отсчёта. В общей теории относительности (ОТО) ставится задача таким образом сформулировать физические законы, чтобы они были справедливыми во всех системах отсчёта. Особенно это важно для неинерциальных систем отсчёта, поскольку в инерциальных системах с разной степенью точности вполне применимы относительность Галилея, СТО или РСТО.

Переход к неинерциальным системам отсчёта приводит к нелинейности соотношений между пространственными координатами и временем в разных системах отсчёта. Наличие нелинейностей означает, что связи между координатами и временем, между физическими величинами становятся дифференциальными, выражаются через дифференциалы и нелинейные функции, носят локальный характер. Основной задачей ОТО является нахождение коэффициентов перед произведениями дифференциалов координат и времени в выражении для квадрата дифференциала так называемого интервала:



В данном тензорном равенстве коэффициенты в совокупности составляют метрический тензор. Дифференциалы координат вида являются четырёхмерными векторами, которые в свою очередь составляются из дифференциалов пространственных координат и времени. Смысл равенства заключается в том, что при переходе из одной системы отсчёта в другую заменяются координаты и меняется зависимость компонент метрического тензора от координат, при этом интервал остаётся неизменным.

Знание метрического тензора в той или иной системе отсчёта позволяет рассчитывать основные свойства данной системы отсчёта, находить движения тел и корректно записывать физические законы. Для сравнения укажем, что в СТО метрический тензор имеет ненулевые только 4 диагональные компоненты с постоянными значениями, равными ± 1, а в ОТО все 16 компонент метрического тензора могут быть функциями координат.

Метрический тензор в ОТО находят путём решения соответствующих уравнений для метрики. В свою очередь, уравнения для метрики выводятся исходя из того предположения, что энергии-импульсы материальных тел и полей, действующих в данной системе, порождают эффективное гравитационное поле, которое влияет на кривизну пространства-времени и изменяет его метрику, делая её отличной от метрики плоского четырёхмерного пространства-времени Минковского. В предельном случае очень малых энергий-импульсов материальных тел и полей метрика ОТО переходит в метрику СТО (РСТО). Если в СТО известны физические величины в одной инерциальной системе отсчёта, то с помощью преобразований Лоренца (в общем случае с помощью преобразований Пуанкаре) нетрудно вычислить эти величины в другой системе отсчёта. В ОТО возможны любые системы отсчёта, включая неинерциальные, что требует предварительного нахождения метрики в каждой типичной системе отсчёта. Предположение о полной относительности выбора той или иной неинерциальной системы отсчёта для описания явлений создаёт в ОТО проблему отождествления — конкретный наблюдатель не знает точно, в какой неинерциальной системе отсчёта из множества возможных он сейчас находится.

Метрические теории, не совпадающие с ОТО[править]

Данные теории используют почти те же самые принципы, что применяются и в ОТО. Отличия возникают в тех местах теории, где необходимо интерпретировать тензорные уравнения для метрики с точки зрения кривизны пространства-времени или зависимость этих уравнений от тензоров энергии-импульса материи и полей. Очевидно, что изменение уравнений для метрики приводит к изменению и компонент метрического тензора. Тем самым предсказания разных теорий могут существенно различаться друг от друга. Например, в ОТО возможны чёрные дыры, тогда как в релятивистской теории гравитации (РТГ) Логунова из-за другого решения для метрического тензора чёрным дырам не находится места.[1] Сутью РТГ является введение дополнительного тензорного условия для метрики с тем, чтобы наложить на метрику условия её согласованности с метрикой СТО. Кроме этого, в уравнения для метрики непосредственно вводится масса гравитона.

В теории Эйнштейна-Картана, с целью учёта спин-орбитальных взаимодействий материальных тел и их полей, вместо неевклидовой геометрии пространства-времени используется геометрия Римана-Картана. Учёт вращения тел производится с помощью аффинного кручения и тензоров кручения и спина. Как и в РТГ, в теории Эйнштейна-Картана имеется два уравнения для метрики, тогда как в ОТО уравнение для нахождения метрики только одно.

В скалярно-тензорной теории Джордан-Бранс-Дике (ДБД) гравитационное поле как эффективная метрика пространства-времени определяется не только воздействием тензора энергии-импульса материи, как в ОТО, но и как результат действия некоторого скалярного поля [1]. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Наличие скалярного поля в теории ДБД также приводит к двум тензорным уравнениям для метрики.

Как видно, произвол в уравнениях для метрики во всех указанных метрических теориях вытекает из того, что нам заранее неизвестны ни точный вид данных уравнений для метрики, ни даже вид требуемой геометрии пространства-времени. Критерием правильности той или иной теории будет выступать практика, их экспериментальная проверка.

Теорема CPT[править]

Теорема CPT относится к особому классу теорий относительности физических систем и применяется в основном в квантовой теории поля. Согласно теореме CPT уравнения теории остаются инвариантными после выполнения CPT-преобразования, включающего в себя одновременное или комбинированное преобразование зарядового сопряжения C (замены частиц на античастицы), пространственной инверсии P (замена координат частиц на координаты ), и обращения времени (замены времени на время ). Данную теорему можно сформулировать и так: вероятность процесса не изменится, если частицы заменить на соответствующие античастицы, поменять у частиц спины на противоположные значения, а также заменить начало на конец процесса с целью обращения протекания процесса. Теорема CPT была доказана в начале пятидесятых годов ХХ века Г. Людерсом и В. Паули. Таким образом, исходя из представлений и физических параметров частиц, было доказано например, что по сравнению с частицами у соответствующих античастиц магнитные моменты направлены противоположно по отношению к спину.

Относительность физических систем и симметрии[править]

Анализ теорий относительности показывает, что в основе каждой из них лежит какая-то симметрия физических законов. В относительности Галилея такой симметрией является независимость явлений от значения постоянной скорости движения системы. Причиной симметрии следует считать независимость электромагнитных и гравитационных сил, действующих между телами, от одновременного и одинакового изменения состояния движения этих тел.

Симметрией СТО является симметрия относительности Галилея с учётом фактора ограниченности скорости света (или скорости гравитационной волны, если с её помощью осуществляются пространственно-временные измерения). Известно, что если устремить скорость света в преобразованиях Лоренца в бесконечность, эти преобразования переходят в преобразования Галилея. Математически симметрию можно выразить как неизменность интервала между двумя пространственно-временными точками в разных инерциальных системах отсчёта. Другой путь демонстрации симметрии — выражение физических законов в таком виде, что они имеют один и тот же вид во всех инерциальных системах.

Для ОТО симметрией можно также считать независимость дифференциального интервала между двумя пространственно-временными точками в применении к любой системе отсчёта, а также ковариантную форму записи физических законов, обеспечивающую их применимость в любой физической системе.

В других метрических теориях появляются дополнительные условия по сравнению с ОТО, которым соответствуют свои симметрии. Например, в релятивистской теории гравитации (РТГ) Логунова важным является первичность пространства Минковского по сравнению с возникающим эффективным неевклидовым пространством, что подчёркивается использованием символов Кристоффеля в пространстве Минковского.

В теории Эйнштейна-Картана дополнительной симметрией можно считать симметрию относительно вращения тел, а в скалярно-тензорной теории Джордан-Бранс-Дике дополнительной симметрией можно предполагать учёт дополнительного скалярного поля.

Источники[править]

  1. Логунов А. А., Мествиришвили М. А. Релятивистская теория гравитации. — М: Наука, 1989.

Литература[править]

  • Эйнштейн А. «Сущность теории относительности», ИЛ, 1955.
  • Паули В. «Теория относительности», М.: Наука, 1983.
  • Тейлор Э. Ф., Уиллер Дж. А. «Физика пространства-времени», пер. с англ, М.: 1971.
  • Пахомов Б. Я. «О принципе относительности к виду взаимодействия.//Философские проблемы современной физики//», М., 1969.
  • Лапидус Л. И. «Следствия СРТ-инвариантности и эксперимент», УФН, Т.95, В. 4, 1968.