Магнитное поле

Материал из Циклопедии
Перейти к навигации Перейти к поиску

Магнитное поле — это компонент электромагнитного поля, возникающий в присутствии переменного во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц или магнитными моментами электронов в атомах (постоянные магниты). С точки зрения квантовой теории поля, электромагнитное взаимодействие передается безмассовым бозонным фотоном (частица, которую можно представить как квантовое возбуждение электромагнитного поля). Основной характеристикой магнитного поля является его сила, которая определяется вектором магнитной индукции (вектором индукции магнитного поля). В СИ магнитная индукция измеряется в теслах (TL), в системе СГС — в гауссах. Эффекты магнитных полей обычно проявляются в постоянных магнитах, которые притягивают магнитные материалы, такие как железо, и притягивают или отталкивают другие магниты.

В специальной теории относительности электрическое и магнитное поля — это два взаимосвязанных аспекта одного и того же объекта, называемого электромагнитным тензором. Разрушение этого тензора в электрическом и магнитном полях зависит от относительной скорости наблюдателя и заряда. Магнитное и электрическое поля взаимосвязаны и являются компонентами электромагнитной силы, одной из четырех основных сил в природе.

В повседневной жизни магнитные поля чаще всего встречаются как невидимая сила, создаваемая постоянными магнитами, которые взаимодействуют с ферромагнитными материалами, такими как железо, кобальт или никель. Магнитные поля очень широко используются во всех современных технологиях, в частности в области электротехники и электромеханики. Торсионные магнитные поля используются как в электродвигателях, так и в генераторах. Взаимодействие магнитных полей в электрических устройствах, таких как трансформаторы, присутствует в магнитных цепях. Магнитные силы предоставляют информацию о носителях заряда в материале благодаря эффекту Голе. Земля создает собственное магнитное поле, которое защищает озоновый слой Земли от солнечного ветра и играет важную роль в навигации по компасу.

Формирование магнитного поля[править]

Постоянные магниты[править]

В отличие от электрических зарядов, магнитные заряды, которые создавали бы магнитное поле аналогичным образом, не наблюдаются. Теоретически такие заряды, называемые магнитными монополями, могут существовать. В этом случае электрическое и магнитное поля будут полностью симметричными.

Наименьшей единицей, которая может генерировать магнитное поле, является магнитный диполь. Магнитный диполь отличается тем, что у него всегда есть два полюса, в которых силовые линии поля начинаются и заканчиваются. Микроскопические магнитные диполи связаны со спинами элементарных частиц. Частицы с ненулевым спином, такие как протоны, нейтроны и электроны, являются элементарными магнитами. Величина дипольного магнетизма может быть выражена магнитным дипольным моментом, который обычно называют магнитным моментом и обозначают буквой . Магнитный момент макроскопического куска вещества можно вычислить как векторную сумму магнитных моментов его атомов. Обычно моменты отдельных атомов направлены случайным образом и поэтому компенсируют друг друга, а общий магнитный момент вещества равен нулю. Однако некоторые вещества, особенно ферромагнетики, обычно упорядочиваются по состояниям, в которых магнитные моменты всех атомов вещества начинают быть направлены в одном направлении. Есть две модели, описывающие магнитное поле элементарных магнитных диполей — модель Гильберта и модель Ампера. Для описаний полей в этих моделях используются два разных значения: і . Вне магнита они такие же, но внутри магнита их значения перестают совпадать.

Модель Гильберта и H-поле[править]

Магнитное поле H, созданное двумя магнитными зарядами.

В этой модели диполь рассматривается как два магнитных заряда, и создаваемое ими поле похоже на поле электрического диполя, то есть его линии начинаются на севере и заканчиваются на юге без бесконечности, точно так же, как линии электрического поля начинаются с положительного заряда и заканчиваются отрицательным. Также по аналогии магнитный момент такого диполя равен , где qm — магнитные заряды, d — расстояние между ними.

Модель Гильберта предполагает допустимые значения напряженности магнитного поля как внутри, так и снаружи магнита, включая тот факт, что его направление противоположно направлению вектора намагниченности. Однако у модели полюса есть ограничения из-за того, что она фактически основана на понятии плотности магнитного заряда. Таким образом, это не может объяснить ни того факта, что полюса магнита нельзя отделить друг от друга, ни магнитных свойств движущихся электрических зарядов

Модель Ампера и B-поле[править]

В этой модели диполь рассматривается как небольшой замкнутый контур, по которому непрерывно течет ток[1]. В такой модели создаваемое ею поле будет соленоидным, что означает, что ее силовые линии не имеют ни начала, ни конца, а будут закручены по контуру, проходящему через ее ядро. Магнитный момент такого диполя будет , где I — ток в цепи, а S — его площадь поперечного сечения. Вот такой магнит будет перпендикулярен контуру. Важной особенностью поля B является то, что в отличие от H-поля, линии которого всегда направлены от одного полюса к другому, его линии внутри магнита имеют противоположное направление.

Подводя итог и формализуя результат, можно сказать, что если силовая линия B-поля попадает в определенную область пространства, она всегда выходит из нее позже, то есть

где интеграл вычисляется по замкнутой поверхности S, а произведение B·dA положительно, когда линия выходит на поверхность, и отрицательно, когда она покидает ее.

На самом деле современная модель ближе к истине. Для многих частиц, таких как переходные металлы или двухатомные молекулы, основной вклад в магнитный момент вносит орбитальный момент электрона[2]. Однако другой источник, то есть момент, возникающий при раскручивании электронов и ядер, такой моделью не объясняется, поскольку спин — чисто квантовое явление и не имеет близких аналогов в мире.

Электрические заряды[править]

Одиночный заряд, двигаясь равномерно и прямо, создает вокруг себя магнитное поле, линии которого замыкаются и закручиваются вокруг оси, совпадающей с направлением движения заряда. Его значение можно записать следующим образом:[3]. Как можно понять из релятивистских соображений, величина поля будет зависеть от системы отсчета наблюдателя, движущегося с той же скоростью и в том же направлении, что и заряд. Таким образом, в теории относительности электрическое и магнитное поля являются компонентами одного и того же электромагнитного поля.

Поскольку электрический ток представляет собой набор большого количества движущихся зарядов, он также создает магнитное поле. Однако такая система не может создавать электрическое поле, потому что она электрически нейтральна. Значение этого поля определяется законом Био-Савара-Лапласа:

Направление поля можно определить по правилу Ампера или правилу правой руки. Такое поле также является вихрем, то есть его силовые линии замкнуты. В крайнем случае бесконечного прямого проводника магнитное поле будет обладать осевой и поступательной симметрией.

Чтобы сконцентрировать магнитное поле, цепь переделывается в катушку, таким образом образуя соленоид, в котором внутреннее поле усиливается, а внешнее поле ослабляется. Если внутрь соленоида поместить ферромагнитный сердечник, образуется электромагнит. Для бесконечного соленоида поле внутри него можно записать по формуле:

где n — количество витков провода на единицу длины, I — ток в цепи. Эта формула также верна для соленоида конечной длины, если точка измерения находится достаточно далеко от его концов.

Магнитное поле также создается переменным электрическим полем. Согласно закону электромагнитной индукции переменное магнитное поле создает переменное электрическое поле, которое также является вихревым. Взаимное создание электрического и магнитного полей на переменных магнитных и электрических полях приводит к возможности распространения электромагнитных волн в пространстве.

Источники[править]

Ссылки[править]