Плавкий предохранитель
Пла́вкий предохрани́тель — коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи размыканием или разрушением специально предусмотренных для этого токоведущих частей под действием тока, превышающего определённое значение.
Общая информация[править]
Предохранитель включается последовательно с потребителем электрического тока и разрывает цепь тока при превышении им номинального тока, — тока, на который рассчитан предохранитель.
По принципу действия при разрыве тока в защищаемой цепи предохранители разделяются на четыре класса — плавкие, электромеханические, электронные и использующие нелинейные обратимые свойства по изменению сопротивления после превышения определённого порога силы тока у некоторых проводящих полупроводниковых материалов (самовосстанавливающиеся предохранители).
В плавких предохранителях при превышении тока свыше номинального происходит разрушение токопроводящего элемента предохранителя (расплавление, испарение), традиционно этот процесс называют «перегоранием» или «сгоранием» предохранителя.
Автоматический выключатель защиты сети снабжён датчиками протекающего тока (электромагнитными и/или тепловыми), при превышении тока сверх номинального, разрывают цепь размыканием контактов, обычно, движение контактов на размыкание производится посредством предварительно взведённой пружины.
Плавкий предохранитель изобрёл Луи Франсуа Клеман Бреге в 1847 году, когда заметил, что небольшие тонкие провода можно использовать для защиты телеграфных установок от молнии, тем самым создав прототип нынешних электрических предохранителей, которые используются практически повсеместно[1].
Предохранители повсеместно используются для защиты любого электрооборудования, например, для исключения перегрева проводов бытовой электрической сети в случае коротких замыканий.
Предохранители на принципиальных электрических схемах обозначаются аббревиатурой «FU» (международное обозначение, от англ. to fuse — плавить) или «Пр» (графическое изображение в советских и российских стандартах по ЕСКД совпадает с IEEE/ANSI, второй вариант на рисунке[2]). В компьютерном тексте используется символ ⏛ (номер в Юникоде U+23DB, HTML-код ⏛)
Принцип работы плавкого предохранителя[править]
В плавких предохранителях в качестве разрушаемого экстратоками токопроводящего элемента применяются чистые металлы (медь, цинк, свинец, железо и др.) и некоторые сплавы — (ковар, сталь и др.).
Все чистые металлы и практически все металлические сплавы имеют положительный температурный коэффициент электрического сопротивления, то есть при повышении температуры сопротивление плавкого элемента увеличивается. Именно положительный температурный коэффициент сопротивления обуславливает защитные свойства плавкого предохранителя. При токах ниже защитного номинального тока тепло, выделяемое в плавком элементе, стационарно рассеивается в окружающую среду. При этом температура плавкого элемента устанавливается немного выше температуры среды. При токах свыше номинального тока в плавком элементе развивается тепловая неустойчивость — повышение температуры ведёт к увеличению активного сопротивления плавкого элемента, что вызывает ещё больший разогрев его, так как мощность на ветви в последовательной электрической цепи есть Повышение сопротивления ведёт к увеличению тепловыделения, тепловыделение повышает температуру, увеличивает сопротивление и тем самым выделяющуюся мощность, что снова увеличивает температуру. При этом процесс развивается лавинообразно — температура плавкого элемента начинает превышать температуру его плавления, что вызывает механическое разрушение плавкого элемента предохранителя и разрыв электрической цепи.
Также важным электрическим параметром плавкого предохранителя, помимо номинального тока, является так называемый параметр защиты, определяемый по время-токовой характеристике.
Экспериментально установлено, что область токов, вызывающих «сгорание» плавкого предохранителя лежит выше линии на графике в декартовых координатах ток — время срабатывания (сгорания, разрыва цепи), уравнение этой линии приближённо удовлетворяет условию:
где — ток, — время сгорания, — параметр размерности А2·с, в широком диапазоне изменения токов постоянен.
Таким образом, чем больше ток, тем меньше время «сгорания» плавкого предохранителя. Параметр часто называют «защитным фактором» или «параметром защиты». Приведённое уравнение не выполняется при очень больших токах, так как разлёт и деионизация плазмы в электрической дуге испарившегося защитного плавкого элемента занимает конечное время. Также при малых токах, ниже номинального защитного тока, время «сгорания» бесконечно.
В профессиональных спецификациях на предохранители параметр обычно указывается в явном виде.
- Конструкции плавких предохранителей и их держатели
Основными элементами предохранителя являются: плавкая вставка (плавкий элемент), корпус, в который устанавливается плавкая вставка и которая может заменяться при перегорании (у предохранителей на малые токи плавкая вставка не сменная, конструкция является одноразовой, и при срабатывании производится замена целиком предохранителя в держателе), контактная часть, дугогасительное устройство и дугогасительная среда.
Плавкая вставка внутри патрона помещается в специальную дугогасящую среду (например, кварцевый песок), которая при сгорании плавкой вставки интенсивно охлаждает и деионизирует электрическую дугу, не давая выйти плазме наружу через корпус. У некоторых типов предохранителей корпус изготавливается из газогенерирующего материала (например, фибры), под тепловым действии дуги происходит интенсивное газовыделение, образующиеся газы способствуют гашению дуги внутри корпуса.
В предохранителях на малые токи плавкие вставки могут иногда помещаются в среду инертных газов в герметичном корпусе (для исключения окисления плавкой вставки со временем: находящаяся под током плавкая вставка нагревается, и интенсивнее происходит процесс окисления).
Предохранители для защиты полупроводниковых приборов (быстродействующие) имеют дополнительные элементы конструкции для ускорения срабатывания: при этом разрыв электрической цепи внутри предохранителя производится электродинамическими силами и натянутыми пружинами. Ускорение срабатывания предохранителя производится также с использованием металлургического эффекта.
Различается номинальный ток плавкой вставки и номинальный ток патрона (для одного патрона выпускаются несколько номиналов вставок одинакового габарита и на разный ток).
Разрушающийся защитный элемент плавкого предохранителя или некоторую сменную конструкцию с этим элементом обычно называют вставкой. Сменная вставка заменяется на новую после её сгорания.
Для защиты электрических цепей устройствами неоднократной защиты экономически целесообразно применять автоматические выключатели — восстанавливающие электрическую цепь манипуляцией (автоматические выключатели).
В слаботочных низковольтных цепях применяются самовосстанавливающиеся предохранители.
См.также[править]
Примечания[править]
- ↑ Anton A. Huurdeman The worldwide history of telecommunications page 168.
- ↑ Условные обозначения предохранителей (по ГОСТ 2.727-68). Архивировано из первоисточника 20 марта 2012.[недоступная ссылка] Проверено 3 января 2012.
Литература[править]
- Корякин-Черняк С. Л., Голубев В. С. Краткий справочник домашнего электрика. Изд. 2-е — СПб.: Наука и Техника, 2006. С. 272. ISBN 5-94387-176-4
- Родштейн Л. А. «Электрические аппараты», Л.: «Энергоиздат», 1981.
![]() ↑ [+] | |
---|---|
Пассивные | |
Активные твердотельные | |
Активные вакуумные и газоразрядные | |
Устройства отображения | |
Акустические | |
Термоэлектрические | |
![]() | Одним из источников, использованных при создании данной статьи, является статья из википроекта «Рувики» («ruwiki.ru») под названием «Плавкий предохранитель», расположенная по адресу:
Материал указанной статьи полностью или частично использован в Циклопедии по лицензии CC-BY-SA 4.0 и более поздних версий. Всем участникам Рувики предлагается прочитать материал «Почему Циклопедия?». |
---|