Участник:Миг/Трихроматизм и нелинейная теория цветного зрения

Материал из Циклопедии
Перейти к навигации Перейти к поиску

ответной реакции данной клетки, называют рецептивным полем клетки. Изучение пространственной и временной организации рецептивных полей ганглиозных клеток показывает, что значительная модификация нервных сигналов происходит уже в сетчатке, то есть до того, как сигнал будет передан в высшие отделы мозга [1].

На основании этого вытекает, что фоторецептор ipRGC рефлекторно участвуют в ощущении восприятия света и цвета.

У сторонников нелинейной теории зрения[править]

Параметры цвета в нелинейной модели цветовосприятия[править]

Рис. 4. Цветокоординатная система нелинейной модели и кривая видности глаза. Кривая, описывает положение спектральных цветов (непрерывного спектра полученного разложением призмой белого солнечного света) на координатной плоскости.

Нелинейная теория цветового зрения, в отличии от трёхкомпонентной, не использует субъективных параметров цвета. Все параметры цвета в нелинейной модели цветовосприятия — все получаемые световые, видимые сигналы при колориметрии не попадают в мозг, не проходят оппонентный отбор с участием мозга и других экстерорецепторов сетчатки. Например, недавно открытых фоторецепторов, о которых не знал С.Ременко (например, см. Фоточувствительные клетки сетчатки ipRGC). Все данные колориметрии подбираются объективно, создаются в лаборатории и имеют строгое назначение и чёткий физический смысл.[2] [3] Как видим колориметрия цвета имеет прямой смысл для создания каталогов цветов для практических целей, например, применения в полиграфии, для производмтва промышленных красок, для художников и т.д.

Нелинейная теория цветового зрения, в отличии от трёхкомпонентной, не использует биологический принцип формирования параметров цвета. Все параметры цвета в нелинейной модели цветовосприятия — все получаемые световые, видимые сигналы при колориметрии создаются на приборах на базе работы полупроводников (фотодатчиков), обеспечивающих выбранный искусственно принцип закладки координат в системе координаты цветового сигнала в трёхкоординатной системе ЦКС, где условно приняты цветовые координатные системы и цветность, где основой математического описания цвета в координатной системе является экспериментально установленный факт, что любой цвет при соблюдении упомянутых условий можно представить в виде смеси (суммы) определённых количеств трёх линейно независимых цветов RGB, т.е. таких цветов, каждый из которых не может быть представлен в виде суммы двух других смешиваемых цветов. Откуда экспериментальные результаты, которые заклакладывают в основу разработки колориметрической ЦКС (центральной координатной системы), получают искусственно и каждый цвет принимается усредненным наблюдателем; поэтому они не отражают точно свойств цветового зрения любого конкретного наблюдателя, а относятся к т.н. среднему стандартному колориметрическому наблюдателю. Будучи стандартными наблюдателями в определённых неизменных условиях, стандартные результаты смешения цветов и построенные на их основе колориметрические ЦКС описывают фактически лишь с точки зрения физической оценки цвета, не учитывая изменения цветовосприятия глаза при изменении условий наблюдения, интенсивности цвета и др.

Принцип построения графиков и оценка результатов должны не совпадать с графиками цветов, получаемые при работе с живыми фоторецепторами по следующим причинам:

  • Установка принципа "ОН" и "ОФФ" при применении живой клетки не на экстерорецепторе, где нет мембраны с внешними долями, где снимаемые сигналы не могут учесть работу распада фотопигментов, где нет принципа оппонентного отбора сигналов, нет связи с другими фоторецепторами, например, ipRGC ганглиозного слоя и мозгом, а также другими клетками сетчатки и т.д. не может служить аналогом с работой, например, колбочки. И тот вывод, что в данном случае фототранзистор и фоторецептор не чувствуют изменение яркости сигналов и ощущения цвета. Не понятно данное сравнение. С наступлением темноты (с уменьшением яркости, силы сигналов) глаз постепенно перестаёт чувствовать цвет.
  • Что касается принципа детектора отношений, связанного с полосой пропускания сигналов, то природа более красиво это делает. Есть принцип оппонентного отбора сигналов, где участвуют биологические системы, регулирующие и оценивающие распад фотопигментов на принципе заряженных частиц. Они по команде запирают или открывают щель прохождения сигналов в пределах, о которых может мечтать любой исследователь физик. Т.е любой принцип без учёта работы живых клеток не может на выходе сравниться с реальным биологическим процессом цветного зрения.
  • Насчёт хрусталика и роговицы ("линзы" глаза), то здесь вообще биологией выбрана оптическая система, где объектив, фокальная поверхность (сетчатка), фотоприёмники на ней (фоторецепторы) способны менять свои геометрические размеры (поднастраиваться под фокусируемое оптическое изображение) (например, изменение радиуса кривизны хрусталика) и мы видим объектизображение резким и никакие хроматические аберрации нас не волнуют. Здесь всё природой придумано и т.д. Можно продлить анализ работы системы колориметра при построения ЦКП, когда заранее ожидай результаты исследований, которые не совпадут с результатами работ живых клеток, живого глаза. (Не случайно, что диагностика заболеваний сейчас не мыслима без рентгеноскопии, томографии, сити, ультразвуковой диагностики живых клеток, тканей. То же самое происходит при микро-рентгеноскопии живых срезов сетчатки глаза).
  • Можно сделать выводы с учётом вышесказанного, что в цветном зрении работают только колбочки, палочки работают с чёрно-белым цветом. (См. Ретиномоторная реакция фоторецепторов (версия Миг)). Согласно основному выводу теории С Ременко — при цветном зрении работают блоки «колбочка+палочка».

Однако, колориметрия цвета имеет прямой смысл для создания каталогов цветов для практических целей, например, применения в полиграфии, в производстве промышленных красок, в живописи и т.д.

При этом на цветокоординатной системе нелинейной модели находятся все возможные цвета и оттенки, которые в природе и не существуют и глаз нигде их не видел (см. рис. 4). Фактически цветокоординатная система нелинейной модели представляет собой всем давно известный «цветовой круг». В центре находится белый цвет, по периметру чёрный. Любые два противоположных (относительно центра координат) цвета равноудалённые от центра, в сумме дадут белый цвет. Яркость — третья координата, перпендикулярная плоскости. Все существующие цвета имеют своё место в этой полусфере. На рисунке сплошной, толстой линией показано положение спектральных цветов (одинаковой яркости) на цветокоординатной системе (ЦКС).

Все цвета и оттенки, которые в настоящее время получают методом колориметрии не могут сравниваться с цветом и оттенками, которые формируются в зрительных отделах головного мозга. Те зрительные сигналы , которые получает мозг, вообще, не сопоставимы с сигналами, которые выдаёт колориметр.

Выводы[править]

В итоге можно сформулировать. Существующий, общепризнанный принцип трихроматизма, трёхкомпонентной теории цветного зрения, который сформулирован на базе многовековой истории развития цветного зрения, практически приводят основную часть учёных к одному выводу, что в основе цветного зрения со всех подходов как физических так и биологических точек зрения основой является восприятие видимых лучей света с оппонентным отбором основных сигналов трёх основных лучей RGB фоторецепторами колбочками при условии дневного освещения — что и есть цветное зрение, а в условия сумеречного и ночного освещения глаз воспринимает синие и ультрафиолетовые лучи палочками. Колбочки и палочки работают в зонах длин волн с границей в 498нм. Т.е. с меньшим значением - работают палочки, свыше - колбочки.

Важным является то, что все исследования учёных в области трихроматизма проводились на клетках непосредственно глаз (вначале на не живых образцах, а затем на живых клетках, например, сетчатки глаза). Откуда, все данные исследований представителями нелинейной теории зрения на роботах глаза с использованием фототранзисторов, без участия мозга на не живых клетках не могут обобщаться, все выводы искусственные, сложные, не подтверждённые снимками микроскопии и не представляют никакого информативного интереса. В итоге нелинейная теория зрения не признана в мире. При этом в лоборатории С.Ременко не получено ни одного альтернативного снимка среза сетчатки, которые опровергли бы принцип трихроматизма. Все приведенные рисунки строятся на базе искусственных данных колориметрии и все выводы, в том числе математические не связаны с данными исследований живой клетки. Нелинеёный характер кривых нелинейной теории основан на данных колориметрии, на данных работы фототранзисторов (полупроводниковых элементов).

Файл:Velitshina Delta.jpg
Рис.30 Схема применения конуса при построении диаграмм трихроматик и нахождение величины координат дельта D(ΔE)
Файл:Euclidean space+.jpg
Рис.31 Евклидово прастранство

Так как пучок света может быть составным, состоящим из излучений многих различных длин волны, определять степень, в которой физический цвет C в Hцвет стимулирует каждую клетку колбочки (например, три колбочки с тремя цветами S,M,L), мы должны вычислить интеграл (относительно w), по интервалу [Wmin,Wmax], из C (w) *s (w), C (w) *m (w), и C (w) *l (w) (см. рис.30,31). Тройные из получающихся чисел связываются к каждому «физическому» цвету C (который является областью в Hцвет) к специфическому воспринятому цвету (который является единственным пунктом в R3цвет). Эта функция, как легко можно заметить, является линейной. Может также быть легко замечено, что много различных областей в «физическом» месте Hцвет может все области привести к тому же самому единственному воспринятому цвету в R3цвет. Таким образом, воспринятый цвет не единственный для одного физического цвета.

Т.е. человеческое цветное восприятие определено определенной, групповой линейной картографией от бесконечномерного места Hilbert Hцвет к 3-мерному Евклидовому месту [4] R3цвет.

  • Такм образом, цвет — с точки зрения физической, оппонентно отобранный и полученный в зрительных отделах головного мозга, оценивается только индивидуально у каждого индивидуума. Спектральное же распределение всех излучений, cоздаваемое фотоприемным устройством, например, колориметром, но в конечном итоге аттестуется среднестатистическим наблюдателем.

См. также[править]

Примечания[править]

  1. Ч. Пэдхем, Дж. Сондерс, «Восприятие света и цвета», Перевод с английского Р. Л. Бирновой и М. А. Островского, Издательство «Мир», Москва, 1978 год. стр. 37
  2. С. Ременко, «Нелинейная модель измерения цвета и уточнение терминов колориметрии», Всеакадемический семинар по проблемам стандартизации и метрологии, Ташкент, 20 — 25 ноября 1986 год, стр 41 — 42.
  3. С. Ременко, «Определение основных понятий в области колориметрии и измерения цветовых параметров излучения», V Всеакадемический семинар по проблемам стандартизации и метрологии Ереван, 16 — 20 ноября 1987 год, стр 58 — 59.
  4. http://en.wikipedia.org/wiki/Color_vision

=[править]

Текст заголовка[править]

Текст заголовка[править]

=====