Основание (химия)

Материал из Циклопедии
Перейти к навигации Перейти к поиску
Основания. Неорганическая химия, 8 класс, по учебнику О. С. Габриелян
Химия 8 класс. Основания // SovaFilmProduction

Основание — сложное вещество, которое состоит из атома металла или иона аммония и гидроксогруппы (−OH).

Имеются различные определения основания. С точки зрения теории раствора, основание — это соединение, при растворении которого увеличивается концентрация отрицательных ионов растворителя.

При взаимодействии кислот и оснований друг с другом образуются молекулы растворителя, то есть происходит нейтрализация.

Основания по теории Аррениуса[править]

Согласно теории Аррениуса, основаниями называют электролиты, которые в водном растворе диссоциируют с образованием катионов металла (или неметаллических катионов, как NH4+) и анионов только одного типа — гидроксида ОН.

Например:

  • NaOH = Na+ + OH
  • NH4OH = NH4+ + OH
  • Ba(OH)2 = Ba2+ + 2OH

Основания Аррениуса можно рассматривать как гидроксиды основных оксидов, то есть как продукты соединения воды с основными оксидами:

  • Na2O + H2O = 2NaOH
  • CaO + H2O = Ca(OH)2
  • BaO + H2O = Ba(OH)2

Основания Аррениуса, как и основные оксиды, при взаимодействии с кислотами и ангидридами, а также с амфотерными оксидами образуют соли, а между собой не взаимодействуют.

Например: Cu(OH)2 + 2HCl = CuCl2 + 2H2O Ca(OH)2 + CO2 = CaCO3 + H2О

Основные гидроксиды, или основания, изображают по следующей общей формуле: Ме(ОН)x, где Ме — атом металла, или металлоподобная группа (как NH4), а x — число гидроксидных групп, равное валентности металла. Например: NaOH, Ba(OH)2, Fe(OH)3.

Номенклатура[править]

Основания называют обычно гидроксидами соответствующих металлов. Если металл имеет постоянную валентность и образует только один гидроксид, то его называют просто гидроксидом этого металла. Так, NaOH — гидроксид натрия, Ba(OH)2 — гидроксид бария. Если же металл имеет переменную валентность и образует несколько гидроксидов, то чтобы различить их, в названиях перед словом гидроксид ставят префиксы с греческими числительными, которые показывают количество гидроксильных групп, приходящихся на один атом металла. Например: CuOH — моногидроксид меди, Cu(OH)2 — дигидроксид меди, Fe(OH)2 — дигидроксид железа, Fe(OH)3 — тригидроксид железа и т. д. Кроме того, некоторые группы оснований и даже отдельные основания имеют специальные названия. Так, растворимые в воде основания называют щелочами. Гидроксид натрия NaOH называется едким натром, гидроксид калия KOH — едким кали, гидроксид кальция Ca(OH)2 — гашеной известью.

Свойства[править]

Основания Аррениуса являются твердыми веществами. Некоторые из них, в частности NaOH и KOH, в термическом отношении достаточно устойчивы: их можно нагревать до температуры плавления и даже кипения, и они не разлагаются. Однако большинство оснований неустойчивы и при нагревании легко разлагаются с образованием оксидов и выделением воды.

Например:

  • Ca(OH)2 = CaO + H2O
  • 2Fe(OH)3 = Fe2O3 + 3H2O

Большинство оснований Аррениуса нерастворимы в воде. Хорошо растворимыми являются только основания щелочных и щелочноземельных металлов, то есть щелочи. Среди щелочей практически наиболее применяемыми являются NaOH, KOH, Ca(OH)2 и Ba(OH)2. Водные растворы едких щелочей имеют едкий мыльный вкус. Они легко разрушают растительные и животные ткани. Поэтому их называют еще едкими щелочами. Растворы едких щелочей обладают способностью изменять окраску индикаторов. Так, в щелочной среде фиолетовый цвет лакмуса меняется на синий, оранжевый цвет метилоранжа — на светло-желтый, а бесцветный раствор фенолфталеина становится фиолетовым. Щелочные свойства растворов оснований обусловливаются наличием в растворе гидроксильных ионов.

Химические свойства оснований Аррениуса определяются их отношением к кислотам, ангидридам, амфотерным оксидам и солям. Наиболее характерным свойством оснований является их способность вступать в химические реакции с кислотами. Причем с кислотами взаимодействуют как растворимые, так и нерастворимые основания.

Реакции взаимодействия оснований с кислотами называют реакциями нейтрализации. Суть реакций нейтрализации заключается в том, что кислотный водород и гидроксильная группа в основании образуют воду, а катионы металла основания и кислотные остатки образуют соль:

  • Ba(OH)2 + 2HCl = BaCl2 + 2H2O
  • Ca(OH)2 + H2SO4 = CaSO4 + 2H2O

Основания вступают в химические реакции также с ангидридами и амфотерными оксидами:

  • 2NaOH + CO2 = Na2CO3 + H2O
  • 2KOH + SO2 = K2SO3 + H2O
  • 2KOH + PbO = K2PbO2 + H2O

Растворы едких щелочей взаимодействуют и с растворами солей, образуя нерастворимые основания:

  • CuCl2 + 2NaOH = Cu(OH)2↓ + 2NaCl
  • Fe2(SO4)3 + 6NaOH = 2Fe(OH)3↓ + 3Na2SO4

Получение[править]

Основания Аррениуса можно получить разными способами.

  1. Непосредственным сообщением основных оксидов с водой. Этим способом можно пользоваться в тех случаях, когда основной оксид непосредственно взаимодействует с водой. Например:
    • Na2O + H2O = 2NaOH
    • CaO + H2O = Ca(OH)2
  2. Взаимодействием едких щелочей, с растворами солей. Этим способом пользуются в лабораториях, когда соответствующий оксид с водой непосредственно не взаимодействует, а гидроксид нерастворим. Например:
    • CuSO4 + 2KOH = Cu(OH)2↓ + K2SO4
    • FeCl3 + 3NaOH = Fe(OH)3↓ + 3NaCl
  3. Взаимодействием активных металлов (K, Na, Ca, Ba) с водой. Например:
    • 2Na + 2H2O = 2NaOH + H2
    • Ca + 2H2O = Ca(OH)2 + H2

Для технического получения NaOH и KOH широко используют способ электролиза водных растворов NaCl и KCl.

Основания как катализаторы[править]

Основания могут использоваться как нерастворимые гетерогенные катализаторы для химических реакций. Например, катализаторами являются оксиды магния, кальция, бария, некоторые цеолиты. Многие переходные металлы входят в состав катализаторов, и многие из них входят в состав оснований. Катализаторы на базе оснований используются для гидрогенизации, при миграции двойных связей, реакции Меервейна-Пондорфа-Верлея, реакции Майкла и многих других реакций.

См. также[править]

Литература[править]

  • Деркач Ф. А. «Химия» — Л., 1968
  • Ластухин Ю. О., Воронов С. А. Органическая химия. Учебник для высших учебных заведений. Издание четвертое — Львов: Центр Европы, 2009. 868 с. (стр. 164)
  • Глоссарий терминов по химии // Й.Опейда, О.Швайка. Ин-т физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецкий национальный университет — Донецк: «Вебер», 2008. 758 с.