Диэлектрик

Материал из Циклопедии
Перейти к навигации Перейти к поиску
Схема конденсатора с параллельными пластинами с диэлектриком. Две пластины с площадью находятся на расстоянии . Когда заряд находится на пластинах, в промежутке между пластинами возникает электрическое поле . Диэлектрик поляризуется из-за смещения зарядов в его молекулах и атомах, уменьшая общее внутреннее поле и увеличивая электрическую ёмкость конденсатора.

Диэле́ктрик (изолятор) (от др.-греч. διά «через; раздельно», и др.-греч. ἤλεκτρον — «янтарь») — вещество (материал), относительно плохо проводящее электрический ток.

Электрические свойства диэлектриков определяются их способностью к поляризации во внешнем электрическом поле. Термин введён в науку английским физиком М. Фарадеем[1].

Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. В электродинамике диэлектрик — среда с малым на рассматриваемой частоте значением тангенса угла диэлектрических потерь ()[2], в такой среде сила тока проводимости[3] много меньше силы тока смещения.

Под «идеальным диэлектриком» понимают среду со значением , прочие диэлектрики называют «реальными» или диэлектриками (средами) «с потерями». С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.

Исследование диэлектрических свойств касается хранения и рассеивания электрической и магнитной энергии в материалах[4][5]. Понятие диэлектрики важны для объяснения различных явлений в электронике, оптике, физике твёрдого тела и клеточной биофизике.

Терминология[править]

Хотя термин «изолятор» подразумевает низкую электрическую проводимость, диэлектрик обычно означает материалы с высокой поляризуемостью. Последнее выражается числом, называемым относительной диэлектрической проницаемостью. Термин «изолятор» обычно используется для обозначения электрической непроводимости, тогда как термин «диэлектрик» используется для подчёркивания способности материала к накоплению энергии посредством поляризации.

Термин «диэлектрик» был придуман Уильямом Уэвеллом в ответ на просьбу Майкла Фарадея[6][7]. Идеальным диэлектриком является материал с нулевой электрической проводимостью[8].

Физические свойства[править]

Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10−5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. Удельное сопротивление хороших проводников может составлять всего 10−8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий внешней среды может изменяться в пределах 10−5—108 Ом·м.

Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь 25 являются неметаллами, причём 12 элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ известны тысячи химических соединений, сплавов или композитов со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбуждённым.

Развитие радиотехники потребовало создания материалов, в которых специфические электромагнитные свойства на радиочастотах сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.

Параметры[править]

Параметры диэлектриков определяют их механические (упругость, прочность, твёрдость, вязкость), тепловые (тепловое расширение, теплоёмкость, теплопроводность), электрические (электропроводность, поляризация, поглощение энергии, электрическая прочность), магнитные, оптические свойства, а также определяют их электрический, механический, тепловой отклики на воздействие электрического поля, механического напряжения, температуры[9].

Примеры[править]

К диэлектрикам относятся различные газы, жидкости, например, масла, стёкла, различные смолы, пластмассы и т. д.

Удельное сопротивление деионизированной воды (см. также: бидистиллят) — 18 МОм·см.

К диэлектрикам относят также параэлектрики — нелинейные диэлектрики, не обладающие спонтанной поляризацией, относительная диэлектрическая проницаемость которых уменьшается с ростом температуры (титанаты стронция, калия, кадмия; сегнетоэлектрики выше температуры Кюри).

Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики.

Использование[править]

При применении диэлектриков одного из наиболее обширных классов электротехнических материалов довольно чётко определилась необходимость использования как пассивных, так и активных свойств.

Примечания[править]

  1. Леванюк А. П. Диэлектрики // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 694—698. — 704 с. — 100 000 экз.
  2. Никольский В. В., Никольская Т. И. Электродинамика и распространение радиоволн. Москва : Наука, 1989.
  3. Ток проводимости — направленное движение электрических зарядов
  4. Thoms, E.; Sippel, P.; et., al. Dielectric study on mixtures of ionic liquids англ. // Sci. Rep. : journal. — 2017. — Vol. 7. — № 1. — С. 7463. — DOI:10.1038/s41598-017-07982-3 — Bibcode2017NatSR...7.7463T — PMID 28785071.
  5. Belkin, A.; Bezryadin, A.; Hendren, L.; Hubler, A. Recovery of Alumina Nanocapacitors after High Voltage Breakdown англ. // Sci. Rep. : journal. — 2017. — Vol. 7. — № 1. — С. 932. — DOI:10.1038/s41598-017-01007-9 — Bibcode2017NatSR...7..932B — PMID 28428625.
  6. Daintith, J. Biographical Encyclopedia of Scientists. — CRC Press, 1994. — С. 943. — ISBN 978-0-7503-0287-6.
  7. James, Frank A. J. L., editor. The Correspondence of Michael Faraday, Volume 3, 1841—1848, Letter 1798, William Whewell to Faraday, p. 442.. Архивировано из первоисточника 23 декабря 2016.[недоступная ссылка] Проверено 18 мая 2012. The Institution of Electrical Engineers, London, United Kingdom, 1996.
  8. [[1] в «Книгах Google» Microwave Engineering – R. S. Rao (Prof.)].
  9. Рез, 1989, с. 18

Ссылки[править]

Литература[править]

  • Поплавко Ю. М. Физика диэлектриков. — Киев: Вища школа, 1980. — 400 с. — (Учебное пособие для вузов).
  • Рез И. С., Поплавко Ю. М. Диэлектрики. Основные свойства и применения в электронике. — Москва: Радио и связь, 1989. — 288 с. — ISBN 5-256-00235-X.
  • Богородицкий Н. П., Волокобинский Ю. М.]], Воробьев А. А., Тареев Б. М. Теория диэлектриков. — М.-Л.: Энергия, 1965. — 344 с. — 10 000 экз.
  • Орешкин П. Т.]] Физика полупроводников и диэлектриков. — Москва: Высшая школа, 1977. — 448 с. — 22 000 экз.
  • Горелик С. С., Дашевский В. Я. Материаловедение полупроводников и диэлектриков. — Москва : Металлургия, 1988. — 574 с.
  • Киселёв В. Ф. Поверхностные явления в полупроводниках и диэлектриках. — Москва : Наука, 1970.
  • Флоренский П. А. Диэлектрики и их техническое применение. Ч. 1 : Общие свойства диэлектриков. — Москва : Р. И. О. ГЛАВЭЛЕКТРО ВСНХ. 1924.

Шаблон:Материалы по электропроводным свойствам

Рувики

Одним из источников, использованных при создании данной статьи, является статья из википроекта «Рувики» («ruwiki.ru») под названием «Диэлектрик», расположенная по адресу:

Материал указанной статьи полностью или частично использован в Циклопедии по лицензии CC-BY-SA 4.0 и более поздних версий.

Всем участникам Рувики предлагается прочитать материал «Почему Циклопедия?».