Вещество
Вещество в химии — физическая субстанция со специфическим химическим составом.
В философском словаре Григория Теплова в 1751 году словом «вещество» переводился латинский термин Substantia.
Вещество в современной физике, как правило, понимается как вид материи, состоящий из фермионов или содержащий фермионы вместе с бозонами; обладает массой покоя, в отличие от некоторых типов полей, как например, электромагнитного[1]. Обычно (при сравнительно низких температурах и плотностях) вещество состоит из частиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе — атомы (атомное вещество), из которых — молекулы, кристаллы и т. д. В некоторых условиях, как например в нейтронных звездах, могут существовать достаточно необычные виды веществ.
Вещество в биологии — материя, образующая ткани живых организмов и входящая в состав органелл клеток.
Различие между веществом и материей[править]
Вещество - это та часть материи, которая может непосредственно ощущается органами чувств большинства людей. Длительное время в некоторых философских направлениях вещество отождествлялось с материей вообще[2].
Различие между веществом и полем[править]
Исторически в физике делалось фундаментальное различие между веществом и полем. Поле, в отличие от вещества, считалось непрерывным и проникающим, в то время как частицы вещества представлялись дискретными, или по крайней мере достаточно локализованными. Известные в классической физике поля, такие как электромагнитное и гравитационное, противопоставлялись массивным и иногда электрически заряженным частицам вещества.
Современная физика нивелирует различие между веществом и полем, считая, что все частицы (в том числе и частицы вещества, равно как и частицы, относящиеся к классическим полям) есть квантовые возбуждения различных фундаментальных полей, и так или иначе все частицы проявляют такие полевые свойства, как делокализованность и подчинение уравнению движения, по сути не отличающееся от полевых (о чем можно говорить как о волновых свойствах всех частиц, в том числе и частиц вещества). Выявление тесной взаимосвязи между полем и веществом привело к углублению представлений о единстве всех форм и структуры физической картины мира.
Впрочем в контексте задач, относящихся к классической физике, а иногда и несколько шире, бывает иногда довольно удобно пользоваться и старой терминологией, хотя в контексте физики в целом она уже и выглядит анахронизмом . Например, если речь идет о взаимодействии заряженных частиц с электромагнитным полем, довольно удобно, следуя традиции называть одно «полем», а другое «веществом», особенно если вещество рассматривается или чисто классически, или — если квантово — то в терминах волновых функций (что позволяет избежать чисто терминологически неудобного пересечения понятий).
Свойства вещества[править]
Каждому веществу присущ набор специфических свойств — объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ. К наиболее характерным физико-химических свойств относятся константы — плотность, температура плавления, температура кипения, термодинамические характеристики, параметры кристаллической структуры. К основным характеристикам вещества принадлежат его химические свойства.
Классификация веществ[править]
Число веществ в принципе (потенциально) неограниченно велико; к известному числу веществ постоянно добавляются новые вещества, как открываемые в природе, так и синтезированные искусственно.
Химическая классификация[править]
Индивидуальные вещества и смеси[править]
В химии принято разделять все объекты её изучения на индивидуальные вещества (иначе — соединения) и их смеси. Под индивидуальным веществом понимают абстрактное понятие, обозначающее набор атомов, связанных друг с другом по определенному закону. Граница между индивидуальным веществом и смесью веществ довольно расплывчата, так как существуют вещества непостоянного состава, для которых, вообще говоря, нельзя предложить точной формулы. Кроме того, индивидуальное вещество остается абстракцией из-за того, что практически достижима только конечная чистота вещества. Это значит, что любой конкретный и реально существующий образец представляет собой смесь веществ, пусть и с большим преимуществом одного из них. Несмотря на кажущуюся надуманность этого ограничения, зачастую чистота вещества играет ключевую роль в его свойствах. Так, знаменитая прочность титана проявляется только после того, как он очищен от кислорода до определенного предела (менее сотых долей процента).
Неорганические вещества[править]
Органические вещества[править]
- Амиды
- Амины
- Ангидриды
- Кетоны и альдегиды
- Карбоновые кислоты
- Нитрилы
- Сероорганические соединения
- Спирты
- Углеводороды
- Замещенные углеводороды
- Простые и сложные эфиры
- Аминокислоты
Агрегатные состояния[править]
Все химические вещества могут существовать в трех основных агрегатных состояниях — твердом, жидком и газообразном. Так, лёд, жидкая вода и водяной пар — это твердое, жидкое и газообразное состояния одного и того же химического вещества — воды H2O. Твердые, жидкие и газообразные формы не являются индивидуальными характеристиками химических веществ, а соответствуют только различным состоянием существования химических веществ, которые зависят от внешних физических условий. Поэтому нельзя приписывать воде только признак жидкости, кислороду — признак газа, а хлориду натрия — признак твердого состояния. Каждое из этих (и всех других веществ) при изменении условий может перейти в любое другое из трех основных агрегатных состояний.
При переходе от идеальных моделей твердого, жидкого и газообразного состояний к реальным состояниям вещества обнаруживается несколько пограничных промежуточных типов, общеизвестными из которых являются аморфное (стекловидное) состояние, состояние жидкого кристалла и высокоэластичное (полимерное) состояние. В связи с этим часто пользуются более широким понятием «фаза».
В физике рассматривается четвертое агрегатное состояние вещества — плазма, частично или полностью ионизирующее состояние, в котором плотность положительных и отрицательных зарядов одинакова (плазма электронейтральна).
Примечания[править]
- ↑ Это различие было в прошлом одним из признаков классификации физических объектов на вещества и «поля», однако на настоящий момент такая классификация устарела: в основе вещества также лежит квантовое поле, а разделение фундаментальных полей на основные классы (сопоставимые со старым делением на вещество и поле) происходит в основном по признаку спина; хотя можно признать, что на некотором глубинном уровне все бозонные фундаментальные поля безмассовые, однако в результате некоторые из них (например, поле-переносчик слабого взаимодействия) все же приобретает массу, а механизм же приобретения массы фермионными полями недостаточно ясен, что мешает сделать массовость или безмассовость основой некоей содержательной классификации, особенно учитывая, что вопрос о наличии массы у нейтрино было долгое время открытым и решен только экспериментально.
- ↑ ВНУТРЕННИЙ ПРЕДИКТОР СССР Основы социологии. — Санкт-Петербург: 2016. — Vol. 1. — С. 110.
Фильмы[править]
Литература[править]
- Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. — М.: Химия, 1989
Термодинамические состояния вещества ↑ [+] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Фазовые состояния | |||||||||||
Фазовые переходы |
| ||||||||||
Дисперсные системы | |||||||||||
См. также |
Элементарные частицы | |||||||
---|---|---|---|---|---|---|---|
Составные частицы |
| ||||||
Квазичастицы | Дроплетон · Солитон Давыдова · Экситон · Биэкситон · Магнон · Фонон · Плазмон · Поляритон · Полярон · Примесон · Ротон · Биротон · Дырка · Электрон · Куперовская пара · Орбитон · Трион · Фазон · Флуктуон · Энион · Холон и спинон | ||||||
Списки | Список частиц · Список квазичастиц · Список барионов · Список мезонов · История открытия частиц |
Основные элементы природы ↑ [+] | |
---|---|
Вселенная | |
Земля | |
Погода | |
Окружающая среда | |
Жизнь | |