Средние интервального ряда
Средняя — это числовая характеристика случайной величины, равная среднему ожидаемому значению и находящаяся между наименьшим и наибольшим значениями интервального ряда.
Содержание |
[править] Виды средних:
- средняя арифметическая;
- средняя геометрическая;
- средняя гармоническая.
[править] Обозначения:
n — объём совокупности;
m — число интервалов;
xi-1 — нижняя граница i-ого интервала;
xi — верхняя граница i-ого интервала;
x’i — середина i-ого интервала;
fi — частота i-ого интервала;
[math]\bar x[/math] — средняя — математическое ожидание.
[править] Формулы:
где
Для средних верно неравенство:
[править] Другие формулы:
- средние;
- дисперсия;
- среднеквадратическое отклонение;
- среднее линейное отклонение;
- мода;
- медиана;
- квартиль;
- дециль;
- начальный момент k-ого порядка;
- центральный момент k-ого порядка;
- коэффициент асимметрии;
- коэффициент эксцесса.
[править] Другие разделы:
- вероятность;
- распределения;
- дискретная случайная величина (средняя);
- непрерывная случайная величина (средняя);
- интервальный ряд (средние);
- коэффициент парной корреляции.