Горение и взрыв газа

Материал из Циклопедии
Перейти к навигации Перейти к поиску
Взрыв смеси метана с кислородом [1:41]
Взрыв водорода

Горение и взрыв газов (и аэрозолей) — это с точки зрения химии одинаковые процессы превращения смеси горючих газов и окислителя в продукты сгорания, а с точки зрения физики — принципиально различные процессы, имеющие существенно различные внешние проявления.

Под взрывом в физике понимают широкий круг явлений, связанных с выделением большого количества энергии в ограниченном объёме за очень короткий промежуток времени. Кроме взрывов обычных, конденсированных химических и ядерных взрывчатых веществ, к взрывным явлениям относятся также мощные электрические разряды, когда в разрядном промежутке выделяется большое количество тепла, под воздействием которого среда превращается в ионизированный газ с высоким давлением; взрыв металлических проволочек при протекании через них мощного электрического тока, достаточного для быстрого превращения проводника в пар; внезапное разрушение оболочки, удерживающей газ под высоким давлением; столкновение двух твердых космических тел, движущихся навстречу одно другому со скоростью, измеряемой десятками километров в секунду, когда в результате столкновения телá полностью превращаются в пар с давлением в несколько миллионов атмосфер, и т. д. Общим признаком для всех этих разнообразных по своей физической природе явлений взрыва служит образование в локальной области зоны повышенного давления с последующим распространением по окружающей эту область среде со сверхзвуковой скоростью взрывной/ударной волны, представляющей собой прямой скачок давления, плотности, температуры и скорости среды.

При воспламенении горючих газообразных смесей и аэрозолей по ним распространяется пламя, представляющее собой волну химической реакции в виде слоя толщиной менее 1 мм, называемого фронтом пламени. Однако, как правило (если не считать детонационных режимов сгорания), эти процессы происходят недостаточно быстро для образования взрывной волны. Поэтому процесс сгорания большинства газовых горючих смесей и аэрозолей нельзя называть взрывом, а широкое распространение такого названия в технической литературе, по-видимому, связано с тем, что, если такие смеси воспламеняются внутри оборудования или помещений, то в результате значительного повышения давления происходит разрушение последних, которое по своей природе и по всем своим внешним проявлениям носит характер взрыва. Поэтому, если не разделять процессы горения и собственно разрушения оболочек, а рассматривать всё явление в целом, то такое название аварийной ситуации в известной мере можно считать оправданным. Поэтому, называя горючие газовые смеси и аэрозоли «взрывоопасными» и определяя некоторые показатели «взрывоопасности» веществ и материалов, следует помнить об известной условности этих терминов.

Итак, если в некотором сосуде воспламенилась горючая газовая смесь, но сосуд выдержал образовавшееся вследствие этого давление, то — это не взрыв, а простое сгорание газов. С другой стороны, если сосуд разорвался, то — это взрыв, и при этом не имеет значения быстро или очень медленно происходило в нём сгорание газа; более того, — это взрыв, если в сосуде и вовсе не было горючей смеси, а он разорвался, например, вследствие превышения давления воздуха или даже без превышения расчетного давления, а вследствие потери прочности сосуда в результате коррозии его стенок.

Для того чтобы любое физическое явление можно было назвать взрывом, необходимо и достаточно, чтобы по окружающей среде распространялась ударная волна. А ударная волна может распространяться только со сверхзвуковой скоростью, иначе это не ударная, а акустическая волна, которая распространяется со скоростью звука. И никаких промежуточных явлений в сплошной среде в этом смысле не существует.

Другое дело — детонация. Несмотря на общую химическую природу с дефлаграцией (реакция горения), она сама распространяется вследствие распространения ударной волны по горючей газообразной смеси и представляет собой комплекс ударной волны и волны химической реакции в ней.

В литературе часто встречается термин «взрывное горение», под которым понимают дефлаграцию со скоростью распространения турбулентного пламени порядка 100 м/с. Однако такое название лишено всякого физического смысла и ничем не оправданно. Горение газообразных смесей бывает дефлаграционным и детонационным, и никакого «взрывного горения» не бывает. Введение в практику этого понятия, очевидно, было вызвано желанием авторов особо выделить высокотурбулентное дефлаграционное горение, одним из важных поражающих факторов которого является скоростной напор газа, который сам по себе (без образования ударной волны) может и разрушить, и опрокинуть объект [1].

Известно, что при некоторых условиях дефлаграция может переходить в детонацию. Условия, способствующие такому переходу, — это обычно наличие длинных вытянутых полостей, например, труб, галерей, горных выработок и проч., особенно если они содержат препятствия, служащие турбулизаторами газового потока. Если горение начинается как дефлаграция, а заканчивается как детонация, то кажется логичным предположить наличие некоторого промежуточного по своей физической природе переходного режима, который некоторые авторы и называют взрывным горением. Однако и это не так. Переход дефлаграционного горения в длинной трубе в детонацию можно представить следующим образом. Вследствие турбулизации и соответствующего увеличения поверхности пламени скорость его распространения увеличивается, и оно толкает впереди себя горючий газ с большей скоростью, что в свою очередь ещё больше увеличивает турбулентность горючей смеси впереди фронта пламени. Процесс распространения пламени становится самоускоряющимся с усиливающимся поджатием горючей смеси. Поджатие горючей смеси в виде волны давления и повышенной температуры (температура в акустической волне повышается по закону адиабаты Пуассона, а не по адиабате Гюгонио, как это происходит при ударном сжатии) распространяется вперед со скоростью звука. А всякое новое дополнительное возмущение со стороны ускоряющегося фронта турбулентного пламени распространяется по уже нагретому поджатием газу с большей скоростью (скорость звука в газе пропорциональна Т1/2, где Т — абсолютная температура газа), и поэтому оно вскоре догоняет фронт предыдущего возмущения и суммируется с ним. А обогнать фронт предыдущего возмущения оно не может, так как местная скорость звука в холодном горючем газе, расположенном в невозмущённом газе, значительно ниже. Таким образом, на переднем фронте первого акустического возмущения происходит сложение всех последующих возмущений, амплитуда давления на фронте акустической волны увеличивается, а сам фронт из первоначально пологого становится все более крутым и в конечном итоге из акустического превращается в ударный. При дальнейшем росте амплитуды ударного фронта температура в нём по адиабате Гюгонио достигает температуры самовоспламенения горючей смеси, что и означает возникновение детонации. Детонация — это ударная волна, в которой происходит самовоспламенение горючей смеси.

Рассматривая описанный механизм возникновения детонации, важно отметить, что его нельзя понимать как непрерывный переход от дефлаграции в результате постоянного ускорения фронта пламени: детонация возникает скачкообразно впереди дефлаграционного пламени, даже на существенном расстоянии от него, когда там создаются соответствующие критические условия. В дальнейшем детонационная волна, представляющая собой единый комплекс ударной волны и волны химической реакции, распространяется стационарно с постоянной скоростью по невозмущенному горючему газу, независимо от породившего её дефлаграционного пламени, которое при подходе к продуктам детонации вскоре вообще перестает существовать.

Таким образом, ударная волна, волна химической реакции и волна разрежения в продуктах сгорания движутся с одинаковой скоростью и вместе представляют собой единый комплекс, обусловливающий распределение давления в зоне детонации в виде острого короткого пика. Строго говоря, зона химической реакции отстоит на некотором расстоянии от фронта ударной волны, так как процесс самовоспламенения возникает не сразу же после ударного сжатия горючей смеси, а по истечении определённого периода индукции и имеет некоторую протяжённость, поскольку химическая реакция происходит хотя и быстро, но не мгновенно. Однако ни начало химической реакции, ни её конец на экспериментальной кривой пика давления никаких характерных изломов не определяют. При экспериментах датчики давления фиксируют детонацию в виде очень острых пиков, причем часто инерционность датчиков и их линейные размеры не позволяют проводить достоверных измерений не только профиля волны, но даже и её амплитуды. Для грубых оценок амплитуды давления в детонационной волне можно считать, что оно в 2-3 раза превышает максимальное давление взрыва данной горючей смеси в замкнутом сосуде. Если детонационная волна подходит к закрытому торцу трубы, то происходит её отражение, в результате которого давление ещё увеличивается. Этим и объясняется большая разрушительная сила детонации. Воздействие детонационной волны на препятствие очень специфично: оно носит характер жесткого удара.

По аналогии с конденсированными взрывчатыми веществами, которые принято делить на метательные (порохá) и бризантные, можно отметить, что детонация в этом смысле оказывает, условно говоря, бризантное действие на препятствие, а дефлаграция — метательное.

Возвращаясь к вопросу о возможности и условиях перехода дефлаграции в детонацию, следует отметить, что для этого необходимы не только турбулизаторы газового потока, но существуют также и концентрационные пределы возможности детонации, которые существенно ýже концентрационных пределов дефлаграционного распространения пламени. А что касается возможности детонации газового облака в открытом пространстве, то на это способны далеко не все горючие газообразные смеси: известны экспериментальные исследования, показавшие, например, что, когда в центре метановоздушного облака стехиометрического состава инициировали детонацию, то есть взрывали небольшую навеску конденсированного взрывчатого вещества, то начавшаяся детонация облака затухала и переходила в дефлаграцию. Поэтому, когда есть необходимость заставить газообразное облако сдетонировать в открытом пространстве (так называемая вакуумная бомба), то, во-первых, следует выбрать вещество, способное детонировать в смеси с воздухом в открытом пространстве, например, окись этилена, а во-вторых, не просто поджечь его, а изначально взорвать хотя бы небольшую навеску конденсированного взрывчатого (детонирующего) вещества.

Самовоспламенение или детонация

Возможен ещё один весьма интересный режим сгорания газов: переход дефлаграции в самовоспламенение части горючей смеси. При определённых условиях это возможно при горении в замкнутом объёме, когда по мере распространения фронта пламени от точки зажигания давление в замкнутом объёме растёт, и по закону адиабаты Пуассона повышается температура горючей смеси, и в какой-то момент происходит самовоспламенение оставшейся части горючей смеси, сопровождающееся скачком давления в локальном объёме. Более подробные теоретические описания этого процесса содержатся в литературе [2, 3].

При экспериментах описанное явление самовоспламенения может восприниматься как переход дефлаграции в детонацию, хотя между ним и детонацией есть принципиальные физические различия: при детонации смесь воспламеняется от ударного сжатия по адиабате Гюгонио (необратимый термодинамический процесс), а в описанном случае — от изоэнтропийного сжатия по адиабате Пуассона (обратимый термодинамический процесс); детонация распространяется в виде волны с некоторой конечной скоростью, а описанный процесс самовоспламенения происходит одновременно во всём оставшемся объёме горючей смеси, что условно можно интерпретировать как распространения пламени с бесконечно большой скоростью.

Что происходит в цилиндре двигателя внутреннего сгорания

В связи с этим уместно заметить, что в цилиндре двигателя внутреннего сгорания нет благоприятных условий для перехода дефлаграции в детонацию, зато есть условия для самовоспламенения последних порций горючей смеси. Разработчикам двигателей внутреннего сгорания это необходимо выяснить, так как только на основе правильного понимания физики этих процессов возможен поиск эффективных путей борьбы с детонацией или с тем, что ошибочно понимается как детонация.

Кстати, в двигателях внутреннего сгорания вполне вероятна и подлинная детонация, но как результат того, что в смеси она изначально инициируется искровым разрядом, который, как было отмечено в самом начале, является взрывом, и если смесь при определённом режиме работы двигателя способна детонировать от такого источника ударной волны, то она и возникает. Но в таком случае и пути борьбы с детонацией оказываются совсем другими. Например, целесообразно попытаться искровое зажигание заменить калильным, но только, конечно, не таким, которое применялось на заре двигателестроения в виде постоянно нагретого тела, а импульсным. Оно может осуществляться, например, путём пропускания через резистор очень большого тока в течение очень короткого промежутка времени. Предельно упрощенно такое зажигание можно представить так: через металлическую проволочку определённых размеров и формы следует пропускать такой ток, который способен её расплавить за время порядка менее 0,1 с, но действительное время пропускания тока сократить настолько, чтобы зажигание смеси происходило, а расплавление проволочки — нет. Современные тиристоры и другая элементная база промышленной электроники вполне позволяют это осуществить бесконтактными методами и при этом достаточно тонко устанавливать и момент зажигания, и величину импульса энергии калильного зажигания.

Литература

  • Водяник В. И. Оценка опасности взрывов больших газовых облаков в неограниченном пространстве // Безопасность труда в промышленности, № 11, 1990.
  • Водяник В. И., Тараканов С. В. Возникновение волн давления при самовоспламенении газа перед фронтом пламени в замкнутом сосуде // Физика горения и взрыва. № 1, 1985.
  • Водяник В. И. Взрывозащита технологического оборудования. — М.: Химия, 1991. — 256 с.
  • Зельдович Я. Б., Баренблатт Г. И., Либрович В. Б., Махвиладзе Г. М. Математическая теория горения и взрыва. — М.: Наука, 1980. — 479 с.
  • Зельдович Я. Б. Теория ударных волн и введение в газодинамику. — М.: Издательство АН СССР, 1946.
  • Зельдович Я. Б., Компанеец А. С. Теория детонации. — М.: Гостеоретиздат, 1955.
  • Солоухин Р. И. Ударные волны и детонация в газах. — М.: Физматгиз, 1963.
 
Взрывы
Мета

ВзрывВзрывчаткаЦепная реакция

Виды и сопутствующее

Аккумулятора мобильного телефонаВ интернет-кафеКонденсатораМеталла при удареПамятника ЛенинуТелевизораГорение и взрыв газаТермобарическийЯдерныйВзрывная травмаГранатаМинаТринитротолуолПояс шахида

Известные случаи

Авария на Чернобыльской АЭСНа улице Бен-Йехуда (1948)В Джосе (2014)Бензовоза в ДР КонгоЖилого дома в Ступино (2022)Жилого дома в Шахтах (2019)На иранском НПЗ 24 мая 2011 годаРядом со зданием ГИБДД ВолгоградаТу-154 в СургутеВ Могадишо (2017)В магазине «Перекрёсток» (СПб)Кареты скорой помощи в КабулеНа КПП «Джильвегезю»Теракт в ДомодедовоУбийство Ахмата КадыроваНа «Северных потоках»Взрыв вблизи села Сусузлуг (2021)В Санкт-Петербурге (2023)В Карабулаке (2011)

Природное и теории

Большой ВзрывВзрыв планет-гигантов (ледяной оболочки спутников) • ЖаманшинСероводорода в Чёрном мореСтолкновение кометы с солнцемШаровая молнияЯдерный взрыв на Марсе

В культуре

1000 тонный взрыв заряда ВВ (фильм)Взрыв (телеигра)Взрыв через 10 000 лет, или Как цивилизация ускоряла эволюцию человека