Стопа в оптике
Стопа́ в о́птике — набор оптически прозрачных плоских пластин, устанавливаемый под некоторым углом к падающему свету[1].
Обычно этот набор пластин устанавливают под углом Брюстера.
Физические основы[править]

Естественный свет не поляризован, направления колебаний вектора напряжённости электрического поля хаотичны, но его можно представить как сумму взаимно перпендикулярных некогерентных колебаний с одинаковой интенсивностью[2]:
, где
,
,
где — хаотическая функция времени.
Упорядочить хаотичность направленности вектора электрического поля световой волны можно с помощью приборов, называемых поляризаторами. Простейшим поляризатором является плоскопараллельная пластинка, расположенная под углом Брюстера к направлению падающего света, при этом отражённый свет оказывается линейно поляризованным в плоскости, перпендикулярной плоскости падения света на пластинку (см. Формулы Френеля)[3].
Поляризаторы могут не поляризовать свет полностью, в таких случаях говорят о частичной поляризации и вводят понятие степени поляризации :
,
где — максимальная интенсивность одного из направлений колебаний, — интенсивность, перпендикулярная колебаниям . Видно, что плоско-поляризованному свету соответствует , естественному и циркулярно-поляризованному: .
Недостатком простейшего поляризатора, расположенного под углом Брюстера к направлению светового потока, является малая интенсивность отражённого света, то есть доля поляризованного света мала, а значит, КПД поляризации низкий.
Поляризация происходит также и при преломлении света, причём интенсивность преломлённого луча больше отражённого, что повышает КПД поляризации:
,
где — угол Брюстера, — показатель преломления плоскопараллельной пластинки.
Если сложить пластин в пакет (в нашем случае его называют оптическая стопа), то отношения интенсивностей взаимно перпендикулярных компонент составит:
,
где — число пластин в оптической стопе. Видно, что оптическую стопу следует собирать из плоскопараллельных пластинок с высоким показателем преломления. Так, для стопы из 16 пластин при показателе преломления степень поляризации достигает значения . Если же вместо оптического стекла использовать пластины германия, у которого показатель преломления , отношение . Иногда оптическую стопу из 8-10 пластинок называют стопой Столетова (внешний вид стопы Столетова показан на рисунке 1, конструкция со встречным наклоном пластин), в ней степень поляризации света при прохождении через каждую пластинку увеличивается приблизительно на 8 %. Суммарную поляризацию света, прошедшего через оптическую стопу, можно найти с помощью формул Френеля (см. рисунок 2).
Показатель качества идеальной оптической стопы тем выше, чем больше количество входящих в стопу пластин и может быть аппроксимирован как
,
где .
Однако, в реальных оптических стопах показатель качества ниже из-за рассеяния, многократных отражений и частичного поглощения компонент светового излучения в стопе. Для реальных оптических стоп применяют эмпирическую формулу расчёта показателя качества:
,
где — теоретическая зависимость показателя качества для идеальной стопы, — число пластин, — эмпирический параметр, называемый показателем дефектности стопы:
,
.
Как известно, при преломлении света, прошедшего сквозь плоскопараллельную пластинку, происходит смещение луча относительно направления его первоначального распространения. Для устранения этого эффекта в оптических стопах (собранных из 8-10-16 пластин) применяют конструкцию стоп со встречным наклоном пластин (см. рисунок 1), выравнивающую направление распространения светового луча.
Применение[править]
Отметим, что оптическую стопу можно использовать как в качестве поляризатора, так и анализатора светового излучения, а также как частичный поляризатор, или деполяризатор, с помощью которого можно выравнивать интенсивности некогерентных, ортогональных друг другу компонент. Оптические стопы можно использовать для изменения направления линейно поляризованного излучения, увеличивая его в заранее известное число раз для последующих измерений.
Примечания[править]
- ↑ Ландсберг Г. С. Оптика : учебное пособие для вузов.. — 6-е изд., стер.. — М.: Физматлит, 2003.
- ↑ Апенко М. И. Прикладная оптика. — 2-е изд. — М.: Наука, 1982.
- ↑ Тудоровский А. И. Теория оптических приборов. Ч. 1. Общая часть. — 2-е изд.. — Москва: Издательство Академии наук СССР, 1948.
Литература[править]
- Апенко М. И., Дубовик А. С. Прикладная оптика. — М. : Наука, 1982.
- Бутиков Е. И. Оптика : учебное пособие для вузов. — СПб. : БХВ-Петербург : Невский ДиалектЪ, 2003.
- Заказнов Н. П., Кирюшин С. И., Кузичев В. И. Теория оптических систем : учебное пособие для студентов вузов. — СПб., : Лань, 2008.
- Запрягаева Л. А. Прикладная оптика. Ч. 1. Введение в теорию оптических систем. — М. : Московский институт инженеров геодезии, аэрофотосъёмки и картографии, 2017.
- Ландсберг Г. С. Оптика : учебное пособие для вузов. — М. : Физматлит, 2003.
- Михеенко А. В. Геометрическая оптика : учебное пособие. — Хабаровск : Издательство Тихоокеанского государственного университета, 2018.
- Сивухин Д. В. Общий курс физики. Т. 4. Оптика. — М. : Физматлит, 2014.
Ссылки[править]
Шаблон:Волновая оптикаШаблон:Геометрическая оптика
![]() | Одним из источников, использованных при создании данной статьи, является статья из википроекта «Рувики» («ruwiki.ru») под названием «Стопа в оптике», расположенная по адресу:
Материал указанной статьи полностью или частично использован в Циклопедии по лицензии CC-BY-SA 4.0 и более поздних версий. Всем участникам Рувики предлагается прочитать материал «Почему Циклопедия?». |
---|