Метод Рунге-Кутты
Перейти к навигации
Перейти к поиску
Метод Рунге-Кутты — это численный метод получения решения дифференциального уравнения.
Описание метода[править]
Суть метода Рунге-Кутты в пошаговом вычислении значений решения y = y(x) дифференциального уравнения вида y’ = f(x, y) с начальным условием (x0; y0).
Метод Рунге-Кутты является методом 3-го порядка точности и называется методом Рунге-Кутты 3-го порядка точности.
Формулы[править]
Другие методы[править]
- метод Эйлера;
- исправленный метод Эйлера;
- усовершенствованный метод Эйлера;
- метод Адамса третьего порядка;
- метод Рунге-Кутты третьего порядка;
- классический метод Рунге-Кутты.
- Для решения систем дифференциальных уравнений используется обобщённый метод Рунге-Кутты.
Литература[править]
- Демидович Б. П., Марон И. А. Основы вычислительной математики — М.: Наука, 1970