Участник:Миг/Черновик-12

Материал из Циклопедии
Перейти к навигации Перейти к поиску
Рецептор (черновик) ([2][3][4][5])

 → Рецептор

← другие значения синонима Рецептор (значения)
Рис. 1. 1) Лиганды;
2) Рецепторы;
3) Вторичные посланники.
Это примеры мембранных рецепторов.[1]

Рецептор — (лат. receptor – приёмник, получатель) — объединение из нервных окончаний дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, например, фоторецепторных клеток сетчатки глаза, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс.

Введение[править]

Рецептор — воспринимающий элемент; чаще всего — в биологии. Это сложное образование, состоящие из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс — волна возбуждения, которая распространяется по нервному волокну и служит для передачи информации от периферических рецепторных (чувствительных) окончаний к нервным центрам, внутри центральной нервной системы и от неё к исполнительным аппаратам — мышцам и железам.[2] Они состоят из «терминалей», дендрита нейронов, глий, специализированных образований межклеточного вещества и специализированных клеток иных тканей. В некоторых рецепторах (например, вкусовых и слуховых рецепторах человека) раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или видоизмененными нервными клетками (чувствительные элементы сетчатки), которые не генерируют нервных импульсов, а действуют на иннервирующие их нервные окончания, изменяя секрецию медиатора. В других случаях единственным клеточным элементом рецепторного комплекса является само нервное окончание, часто связанное со специальными структурами межклеточного вещества (например, тельце Пачини).

Сенсорная рецептия[править]

 → Сенсорная рецептия

Рецепцией называют процесс восприятия и трансформации (преобразования) энергии внешнего раздражителя в энергию нервного импульса или в сложную последовательность внутриклеточных процессов. Она рассматривается как:

  • Клеточная и сенсорная рецепция
  • Классификация и строение сенсорных рецепторов
  • Преобразование энергии в сенсорном рецепторе
  • Свойства рецепторов
  • Рецептивное поле.

Формы и действия рецепторов[править]

Рис. 1t.Экстерорецепторы, Трансмембранная передача сигнала — свойство мембран — способность воспринимать и передавать внутрь клетки сигналы из внешней среды (см. Мембраны колбочек и палочек сетчатки глаза). Рецепторы:
E = extracellular — Внеклеточное место — наружный сегмент мембраны колбочки, заполненный мембранными полудисками, образованными плазматической мембраной, и отделившимися от неё (обращённая к свету, наружная часть столбика из полудисков - постоянно обновляется, за счет фагоцитоза "засвеченных" полудисков клетками пигментного эпителия, и постоянного образования новых полудисков, в теле фоторецептора);
P = plasma плазма в биологии (обработка и передача сигнала) — внутренняя поверхность рецептора;
I = intracellular — Внутриклеточное место — клеточная мембрана (см. Клеточный рецептор).
Рис. 3. Нейрон состоит из одного аксона, тела и нескольких дендритов. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.
Как потенциал действия перемещается вдоль аксона, происходит изменение полярности через мембраны. Отель na+ и K+ охраняющая ионные каналы, открываются и закрываются как мембраны достигает порогового потенциала, в ответ на сигнал от другого нейрона. В начале потенциала действия на Nа+ каналов и na+ движется внутрь аксона, вызывая деполяризацию. Реполяризация происходит, когда на K+ каналы и K+ выходит из аксона. Это создает изменение полярности между вне клетки и внутри. Импульс проходит вниз по аксону в одном направлении, в терминале аксона, где это сигналы касаются других нейронов.
Рис. 1. Схема распределения зарядов по разные стороны мембраны возбудимой клетки в спокойном состоянии (A) и при возникновении потенциала действия (B) (см. объяснения в тексте Потенциал действия).

Формы и действия рецепторов изучены рентгеновской кристаллографией, двойной polarisation интерферометрией, компьютерным моделированием, и исследованияи функции структуры, которые продвинули понимание действия препарата на обязательных участках рецепторов. Коррелят отношений деятельности структуры вызвал конформационные изменения с биомолекулярной деятельностью, и изучен, используя динамические методы, типа круглого дихроизма и двойной polarisation интерферометрии.

Трансмембранное место — receptor: E = extracellular ; место I = intracellular; мембрана P = plasma. В зависит от их функций и лигандов, которые могут идентифицировать несколько типов рецепторов (см. рис.1t):

  • Некоторые белки рецептора [3][4] — периферийные мембранные белки.
  • Много гормонов и рецепторов медиатора — трансмембранные белки: трансмембранные рецепторы вложены в двойной слой фосфолипида мембран ячейки, которые позволяют активацию троп трансдукции сигнала в ответ на активацию обязательной молекулой, или лигандом.
    • Рецепторы Metabotropic соединены с белками Г и затрагивают ячейку косвенно через ферменты, которые управляют каналами иона.
    • Рецепторы Ionotropic (также известные как каналы иона лиганда-gated) содержат центральную пору, которая открывается в ответ на закрепление лиганда.
  • Другой главный класс рецепторов — внутриклеточные белки, типа тех, которые для стероида и intracrine гормональных рецепторов пептида. Эти рецепторы часто могут входить в ядро ячейки и модулировать генное выражение в ответ на активацию лигандом.[5]

Мембранные рецепторы изолированы от мембран ячейки. В связи со сложными процедурами извлечения, используются растворители, моющие средства, и/или очистка близости.[6]


Стимулами для разных рецепторов могут служить свет, механическая деформация — изменение размеров, химические вещества, изменения температуры, а также изменения электрического и магнитного поля. В рецепторных клетках (будь то непостредственно нервные окончания или специализированные клетки) соответствующий сигнал изменяет конформацию чувствительных молекул-клеточных рецепторов, что приводит к изменению активности мембранных ионных рецепторов и к изменению мембранного потенциала клетки. Если воспринимающей клеткой является непосредственно нервное окончание (так называемые первичные рецепторы), то происходит деполяризация мембраны с последующей генерацией нервного импульса. Специализированные рецепторные клетки вторичных рецепторов могут как де-, так и гиперполяризоваться. В последнем случае изменение мембранного потенциала ведет к уменьшению секреции тормозного медиатора, действующего на нервное окончание и, в конечном счете, все равно к генерации нервного импульса. Напаример, вызвать генерацию нервного импульса может фотон, попавший на мембрану клетки находящейся в фоточувствительном слое сетчатки.

В качестве клеточных рецепторных молекул могут выступать либо механо-, термо- и хемочувствительные ионные каналы, либо специализированные G-белки (как в клетках сетчатки). В первом случае открытие каналов непосредственно изменяет мембранный потенциал (механочувствительные каналы в тельцах Пачини), во втором случае запускается каскад внутриклеточных реакций трансдукции сигнала, что ведет в конечном счете к открытию каналов и изменению потенциала на мембране.

Виды рецепторов[править]

Существуют несколько классификаций рецепторов:

  • По положению
    • Экстерорецепторы - расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)
    • Интерорецепторы - расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)
      • Проприорецепторы (проприоцепторы) - рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.
  • По способности воспринимать разные стимулы
    • Мономодальные - реагирующие только на один тип раздражителей (например, фоторецепторы - на свет)
    • Полимодальные - реагирующие на несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).
  • По адекватному (модальности) раздражителю
    • Хеморецепторы - воспринимают воздействие растворенных или летучих химических веществ, изменение уровня сахара в крови, рецепторы вкуса, обоняния;
    • Осморецепторы - воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды), воспринимающие изменения осмотического давления и/или солевого баланса в крови;
    • Механорецепторы или тактильные рецепторы, реагирующие на колебательные и деформационные процессы в качестве звуковых раздражителей, давления, сил тяжести, прикосновений, реагирующие на колебания воздуха, создаваемые звуковым раздражителем, содержат — рецепторы, расположенные в стенках кровеносных сосудов и реагирующие на изменение кровяного давления — барорецепторы, содержат рецепторы, воспринимающие изменения положения тела в пространстве — рецептор отолитового аппарата;
    • Фоторецепторы — биологическая структура и элемент зрительной системы живых организмов, воспринимающие видимые лучи спектра прямого и/или отражённого излучения ультрафиолетового, инфракрасного и/или иного в зависимости от характеристик органа зрительной системы, в том числе и человека);
    • Терморецепторы - воспринимают понижение (холодовые) или повышение (тепловые) температуры
    • Болевые рецепторы, стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность ноцицепторов, которя не позволяет отнести их, например, к "высокопороговым терморецепторам", состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов [7].
    • Электрорецепторы - воспринимают изменения электрического поля
    • Магнитные рецепторы - воспринимают изменения магнитного поля

Рецепторы человека[править]

  • Это нервные окончания, состоящие только из конечных ветвлений осевого цилиндра. Располагаются в эпителии. Выступают в качестве терморецепторов, механорецепторов и ноцицепторов (то есть отвечают за восприятие изменения температуры, механических воздействий и болевые ощущения. (Гистология, цитология и эмбриология).
  • И не свободные нервные окончания:
    • Тельца Пачини — инкапсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, а потому обладают грубой чувствительностью.
    • Тельца Мейснера — инкапсулированные рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, а потому обладают тонкой чувствительностью.
    • Тельца Меркеля — некапсулированные рецепторы давления. Располагаются у птиц — в дерме, у прочих позвоночных — в глубоких слоях эпидермиса. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями[8][9].
    • Тельца Руффини — инкапсулированные рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями. Реагируют также на тепло.
    • Колбы Краузе — инкапсулированные рецепторы, реагирующие на холод.
    • Рецепторы волосяных фолликулов — механорецепторы, расположенные в волосяных фолликулах и реагирующие на отклонение волоса от исходного положения[10].

Рецепторы мышц и сухожилий (проприоцепторы)[править]

  • Мышечные веретена — рецепторы растяжения мышц, бывают двух типов:
    • с ядерной сумкой;
    • с ядерной цепочкой.
  • Сухожильный орган Гольджи — рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок[править]

В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа — инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 — тельцам Паччини.

Рецепторы сетчатки глаза[править]

 → Фоторецепторные клетки сетчатки глаза

Сетчатка глаза содержит Фоторецепторные клетки сетчатки глазапалочковые и колбочковые фоточувствительные клетки, в которых имеются светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат родопсин один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека. Колбочки с тремя пигментами опсина S,M,L), которые у каждой колбочки со своей разновидностью пигмента опсина, определяющие цветовое ощущение (зрение), а именно: S-колбочки (синий цвет), M-колбочки (зелёный цвет) и L-колбочки (красный цвет). Колбочка поэтому чувствительна к видимым длинам волн света, которые соответствуют длинам волн: коротковолновой, средней длине волны и длинной волне света RGB. При это луч света предметной точки, сфокусированный на фокальную поверхность сетчатки в виде кружка нерезкости диаметром 7-9мкм, накрывает блок трёх кобочек RGB, которые оппонентно выделяют основной базовый луч S,M,L в виде биосигнала, отправляемый по зрительным нервам в мозг. Всё это происходит под контролем ганглиозных клеток ipRGC и мозга постоянно. Т.е. происходит жёсткий контроль случайного восприятия синих и УФ, фокусируемых лучей с длиной волны менее 498 нм на фокальную поверхность сетчатки, попадаемых на колбочки (работа фильтра). Откуда и пошёл трихроматизм (три цвета).[11][12]

Следует заметить, что это может сделать только биохимическая зрительная система как глаз, и созданный природой биорецептор ещё не скоро можно заменить механическим аналогом. Проводимые работы сторонниками нелинейной теории зрения на бозе робота - глаза в виде колориметра с 1975 года не могут получить и противопоставить результаты, опровергающие доказанный принцип трихроматизма при цветном зрении. (Палочка в отличие от колбочек, имеющих разновидности пигмента опсин, содержит постоянный пигмент родопсин и не способна воспринимать лучи света с длиной волны более 498 нм, и работать с колбочками M/L вместо синей колбочки-S). (См. Биохимия зрения и свободно-радикальное окисление клеток сетчатки глаза [6]) [Замечание необходимое].

Зрение и оптика[править]

Обоняние[править]

Вкус[править]

Общая физиология[править]

Лиганд (биохимия)[править]

 → Лиганд (биохимия)

Миоглобин (голубой) со связанным лигандом — гемом (оранжевый). Данные из Protein Data Bank
Рис.4. Работа лиганда.

Лиганд (биохимия) (Биохимия и Фармакология) — это химическое соединение (часто малая молекула), которое образует комплекс (в химии) с той или иной биомолекулой (чаще белком, например клеточным рецептором, но иногда, например, с ДНК) и производит, в результате такого связывания, те или иные биохимические, физиологические или фармакологические эффекты. В случае связывания лиганда с белком, лиганд обычно является малой сигнальной молекулой, связывающейся со специфическим участком связывания на белке-мишени (например, на рецепторе), (смотри работу лиганда рис.4.). В случае связывания лиганда с ДНК, лиганд обычно также является малой молекулой или ионом,[13] или белком[14] который связывается с двойной спиралью ДНК.[15]

ИНСТИТУТ БИОЛОГИИ РАЗВИТИЯ им. Н.К. Кольцова РАН[править]

Николай Константинович Кольцов (1872-1940).

Лаборатория клеточной биологии рецепторов РАН[править]

Уникальная научная установка «Система зондово-оптической 3D - трёхмерной корреляционной микроскопии»[1]

Лаборатория, оснащённая современным оборудованием, занимается изучением механизмов функционирования клеточных рецепторов. В настоящее время проводится работа по двум основным направлениям:

  • Первое связано с исследованием адгезионного нейронального G-белоксопряженного рецептора CIRL. Рецепторы CIRL представляют собой природные гибриды двух классов белков – сигнальных рецепторов и молекул клеточной адгезии. Считается, что эти химерные рецепторы могут быть вовлечены в межклеточные взаимодействия и передачу сигналов, опосредованных G-белками. Однако до сих пор для рецепторов данного семейства не были найдены природные агонисты.
  • Второе направление связано с исследованием представителя семейства инсулинового рецептора – IRR (insulin receptor-related receptor). К этому семейству принадлежат также инсулиновый рецептор (IR) и рецептор инсулино-подобного фактора роста (IGF-IR). Лигандами рецепторов IR и IGF-IR являются эндогенные пептиды, тогда как для IRR до недавнего времени не удавалось обнаружить лиганд (биохимия), несмотря на значительные усилия, предпринятые в этом направлении.[16]

Лаборатория ФИЗИОЛОГИИ РЕЦЕПТОРОВ И СИГНАЛЬНЫХ СИСТЕМ[править]

Направления исследований.

Проводимые исследования в лаборатории направлены на изучение роли рецепторов и сигнальных систем биоклетки в регуляции физиологических процессов. Традиции эти были заложены в Институте выдающимся советским физиологом Хачатуром Седраковичем Коштоянцем, которые нашли продолжение в работах его ученика академика РАН Тиграна Мелькумовича Турпаева, возглавлявшего лабораторию с 1961 по 2003 г.

П.В.Авдонин - профессор, зав. лабораторией.

С 2003 года лабораторией руководит доктор биологических наук, профессор Павел Владимирович Авдонин.

К числу достижений лаборатории за последние годы в области сигнальной трансдукции (Передача сигнала (сигнальная трансдукция, трансдукция, сигналинг, сигнализация, англ. signal transduction)) можно отнести:

  • Открытие нового сигнального пути для - адренорецепторов в сердце млекопитающих через ГТФ (используется как источник энергии в биосинтезе белка), который связывает Gi-белок,
  • Выяснение механизмов регуляции экспрессии - рецепторов вазопрессина и - рецепторов ангиотензина II в гладкомышечных клетках кровеносных сосудов.

Впервые показано участие белков Epac в цАМФ-зависимом расслаблении кровеносных сосудов. На культивируемых биоклетках проводятся эксперименты по направленному подавлению экспрессии генов при помощи коротких интерферирующих РНК. Целью является выяснение роли отдельных видов ионных каналов и сигнальных белков во внутриклеточном обмене ионов . С помощью этого метода показано, что в многоядерных клетках поперечно-полосатой мускулатуры функционируют каналы Orai-1, обеспечивающие восполнение запасов ионов кальция в саркоплазматическом ретикулуме. Установлено, что клетках скелетной мускулатуры имеются системы рецепторзависимой регуляции обмена ионов кальция, которые формируются при дифференцировке миобластов в многоядерные митотубулы.

В настоящее время в лаборатории ведутся исследования физиологической функции вторичного мессенджера NAADP и активируемых им двупоровых кальциевых каналов, локализованных в лизосомах и лизосомоподобных везикулах. Обнаружена связь между образованием активных форм кислорода и состоянием двупоровых каналов. Эксперименты проводятся на культивируемых гладкомышечных и эндотелиальных клетках кровеносных сосудов, изолированных сосудах крысы и на традиционном для лаборатории объекте сердце виноградной улитки Helix pomatia.

Полученные данные указываюют на участие двупоровых каналов в поддержании спонтанного ритма сердечных сокращений и реализации действия на кровеносные сосуды вазоконстрикторных и вазодилататорых гормонов и нейротрансмиттеров.[17][18]

Виды некоторых рецепторов и их данные[править]

Cм. в таблице:

Типы рецепторов и их данные
Вид раздражителя Тип рецептора Комментарии
Электрическое поле Ампула Лоренцини [19] и другие типы Имеются у рыб, круглоротых, амфибий, а также у утконоса и ехидны
Химическое вещество Хеморецептор Химический сигнал преобразуется в потенциал действия. Хеморецепторы (вкуса, запаха, феромонов) могут быть очень различны по своей природе, и потому по-разному реагировать на одно и то же вещество — в зависимости от точки его приложения (нос, рот, кожа и т. п.).
Влажность

ПММА

Гигрорецептор Относятся к осморецепторам или механорецепторам. Располагаются на антеннах и ротовых органах многих насекомых
Механическое воздействие. Механорецептор У человека имеются в коже (экстероцепторы кожи) и внутренних органах (барорецепторы, проприоцепторы)
Давление. Барорецептор Относятся к механорецепторам
Положение тела Проприоцептор нервно-мышечные веретена, сухожильные органы Гольджи и др.
Положение тела Вестибулорецептор (или механорецепторы вестибулярного аппарата), реагируют на ускорения и вибрации при наклоне тела или головы.
Осмотическое давление Осморецептор В основном интерорецепторы; у человека имеются в гипоталамусе, а также, вероятно, в почках, стенках желудочно-кишечного тракта, возможно, в печени. Существуют данные о широком распространении осморецепторов во всех тканях организма
Свет, Цвет Фоторецептор,Экстерорецептор Участвуют в восприятии света и цвета
Температура Терморецептор Реагируют на изменение температуры. У человека они имеются в коже и в гипоталамусе.
Повреждение тканей Ноцицептор Болевые рецепторы — свободные нервные окончания немиелинизированных волокон типа C или слабо миелинизированных волокон типа Aδ.
Магнитное поле Магнитные рецепторы Точное расположение и строение неизвестны, наличие у многих групп животных доказано поведенческими экспериментами.

Смотри также[править]

Примечания[править]

  1. https://en.wikipedia.org/wiki/Receptor_(biochemistry)
  2. http://femto.com.ua/articles/part_2/2483.html
  3. Hall, JE (2016). Гайтон и Холл Учебник медицинской физиологии . Филадельфия, штат Пенсильвания: Эльсейер Сондерс. pp. 930-937. ISBN 978-1-4557-7005-2 .
  4. Нельсон DL, Кокс М.М. (2005). Принципы биохимии Лехнингера (4-е изд.). Нью-Йорк, Нью-Йорк: WH Freeman и Company.
  5. Hall, JE (2016). Гайтон и Холл Учебник медицинской физиологии . Филадельфия, штат Пенсильвания: Эльсейер Сондерс. pp. 930-937. ISBN 978-1-4557-7005-2 .
  6. http://en.wikipedia.org/wiki/Receptor_(biochemistry)
  7. David Julius and Allan Basbaum. Molecular mechanisms of nociception. Nature 413, 203-210 (13 September 2001)
  8. Halata Z., Grim M., Baumann K. I.  Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: Review and new results // The Anatomical Record, 2003, 271A (1). — P. 225—239. — DOI:10.1002/ar.a.10029.
  9. Halata Z., Baumann K. I., Grim M.  Merkel Nerve Endings Functioning as Mechanoreceptors in Vertebrates // The Merkel Cell: Structure — Development — Function — Cancerogenesis / Baumann K. I., Halata Z., Moll I. (Eds.). — Berlin, Heidelberg: Springer Verlag, 2003. — xiv + 248 p. — ISBN 978-3-642-05574-4. — P. 3—6.
  10. Paus R., Cotsarelis G.  The Biology of Hair Follicles // The New England Journal of Medicine, 1999, 341 (7). — P. 491—497. — DOI:10.1056/NEJM199908123410706.
  11. http://www.conesandcolor.net/home.htm
  12. Schacter,Gilbert, Wegner, "Psychology", New York: Worth Publishers,2009.
  13. Teif V.B. (2005). «Ligand-induced DNA condensation: choosing the model». Biophysical Journal 89 (4): 2574–2587. DOI:10.1529/biophysj.105.063909. PMID 16085765.
  14. Teif VB, Rippe K. (2010). «Statistical-mechanical lattice models for protein-DNA binding in chromatin.». Journal of Physics: Condensed Matter 22 (41): 414105. DOI:10.1088/0953-8984/22/41/414105. PMID 21386588.
  15. https://en.wikipedia.org/wiki/Ligand_(biochemistry)
  16. http://www.ibch.ru/structure/groups/lrcb
  17. Avdonin P.V., F.Cottet-Maire, G.V.Afanasjeva, S.A.Loktionova, P.Lhote, U.T.Ruegg Cyclosporine A up-regulates angiotensin II receptors and calcium responses in human vascular smooth muscle cells. Kidney Int. 1999, 55, 2407-2414.
  18. Xiao R.-P., P.Avdonin, Y.Y.Zhou, H.Cheng, S.A.Akhter, T.Eschenhagen, R.J.Lefkowitz, W.J.Koch, E.G.Lakatta Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes // Circulation Res. 1999, 84, 43-52.
  19. https://en.wikipedia.org/wiki/Ampullae_of_Lorenzini
 
По положению

Экстерорецепторы | Интерорецепторы | Проприорецепторы

По способности воспринимать разные стимулы

Мономодальные | Полимодальные | Тельце Гербста | Тельце Грандри

По адекватному (Сенсорная модальность) раздражителю

Хеморецепторы | Осморецепторы | Механорецепторы (Тактильные) | Фоторецепторы | Терморецепторы | Болевые рецепторы | Электрорецепторы | Магнитные рецепторы | Тельце Пачини | Тельце Мейснера | Тельца Меркеля | Тельце Руффини | Лиганд (биохимия) | Сенсорная рецептия | Сенсорная модальность |

(Категория:Неврология Категория:Нейробиология Категория:Органы чувств Категория:Рецепторы)