Циклопедия скорбит по жертвам террористического акта в Крокус-Сити (Красногорск, МО)

Физиология цветного зрения

Материал из Циклопедии
Перейти к навигации Перейти к поиску

 → Цветное зрение

 → Труды доктора Р.Е.Марка и его лаборатории

КОЛБОЧКИ
Cones SMJ2 E.svg
  • Нормализованная спектральная чувствительность колбочки примата в зонах
восприятия лучей света, содержащей необходимые фотопигменты кон-опсины для
нормализованных лучей света S, M, L (синих, зелёных, красных)
Расположение Сетчатка
Функция Экстерорецепторы
Морфология Сформированные колбочки
Предсинапсические связи Ни одной
Постсинапсические связи Биполярные и горизонтальные ячейки
NeuroLexID = sao1103104164
Code = 3|11|08.3.01046
[1]
Рис. 1ф. Современные модели цветового восприятия, как это происходит в сетчатке глаза, касаются трехцветного и оппонентного процесса теории (см. Теория оппонентного цветного зрения), введенной в 19 веке.[2]
Рис.3a, Четыре пигмента колбочек птиц, расширяющих диапазон воспринимаемого, видимого электромагнитного спектра в зону ультрафиолетовых лучей

Восприятие цвета начинается со специализированных клеток сетчатки глаза, содержащих зрительные пигменты опсины с различной спектральной чувствительностью, известных как колбочки сетчатки глаза. В организме человека существует три типа колбочек, чувствительных к трём различным спектрам, в результате чего у нас трехцветное цветовое зрение.

Каждая отдельная колбочка содержит зрительные пигменты (опсины), состоящие из протеинов (на базе G-белков), ковалентно связанных либо с 11-цис-hydroretinal или, реже-11-цис-dehydroretinal.[3].

Колбочки, условно названные по порядку длин волн из пиков их спектральной чувствительности (см. рис.1b): типы колбочек с короткой длиной волны (S), средней (М)и длиной (L). Эти три типа колбочек не обязательно специализированно воспринимают определенные цвета, как мы их знаем. Скорее, восприятие цветов достигается комплексным процессом, который начинается с дифференциальной работой этих клеток в сетчатке, и она будет завершена в зрительной коре и ассоциативных зон зрительной коры головного мозга.

Например, в то время как L колбочки называли просто красными экстерорецепторами, microspectrophotometry Денситометрия показала, что их пик чувствительности в зеленовато-желтой области спектра. Аналогичным образом, S — и M-колбочки напрямую не соответствуют синим и зеленым, хотя они часто изображаются как таковые. Здесь важно отметить, что RGB (цветовая модель) — это всего лишь удобное средством для представления цвета, и не имеет прямой зависимости от типа колбочек в глазу человека.

Пик реакции человеческой колбочковой клетки меняется, даже среди лиц с «нормальным» цветовым зрением;[4] у некоторых видов, кроме человека, это полиморфные вариации — больше того, это вполне может быть адаптивным.[5],[6]. Например, явление метамерии, когда разные цвета человек ощущает как один цвет.

Цветовосприятие у человека и приматов[править]

 → Визуальное цветное зрение

 → Цветное зрение у человека

Восприятие цвета у млекопитающих происходит через фоточувствительные рецепторы, содержащие пигменты с различной спектральной чувствительностью. (См. рис. 14а, 14b). У большинства приматов, близких к людям, обнаружено несколько типов фоточувствительных пигментов. На сегодня известны и подробно описаны родопсин (содержащийся в палочках), эритролаб, хлоролаб содержащиеся в колбочках и меланопсин, содержащийся в фоторецепторах ipRGC находящихся в сетчатке в не фокальной поверхности, но тесно связанные синапсами с колбочками, палочками и головным мозгом. При этом они воспринимают первыми все преломлённые лучи света, падающие на сетчатку! Трёхкомпонентная теория зрения базируется на наличие в сетчатке глаза трёх типов фоторецепторов (по спектрам фоточувствительности) — колбочек. Откуда принимается, что видение цвета у большинства приматов — «трихроматики». Остальные приматы и часть млекопитающих, с точки зрения трёхкомпонентной теории цветовосприятия — «дихроматики». Считается, что у части животных вообще отсутствует цветное зрение.

Колбочки согласно восприятию максимумов спектральной чувствительности в зависимости от длин волн условно разделяются на S,M,L: короткая длина волны — (S), средняя -(M), и длинная —(L) типов колбочки (рис. 4), соответственно они названы «синими», «зелёными», и «красными» колбочками и дополнительно — колбочки с более короткой длиной волны — «фиолетовые» и двойные колбочки, которые участвуют в движении птиц. (cм. рис.3a,3b) Колбочки L часто упоминаются как красные рецепторы, микроспектрофотометрия фоточувствительных пигментов показала, что их пиковая чувствительность должна находится в красно-жёлтой (оранжевой) области спектра. Точно так же и М колбочки непосредственно не могут соответствовать зелёному цвету, так как их максимум получается в зелёновато-жёлтой области спектра (рис. 1). Важно отметить, что модель цвета RGB связана принципиально с вопросом работы конусной внешней мембраны колбочек.

Рис. Р. Расположение палочек и колбочек в сетчатке глаза в зоне фовеа и периферийной части сетчатки глаза.[7]
Рис. С. Синхронизация происходит глобально для всех рецепторов по всей сетчатке. Если нет изменений в освещении конуса в результате саккады (быстрые, строго согласованные движения глаз, происходящие одновременно и в одном направлении), изменения выхода конуса не будут. Однако, все конусы, которые испытывают изменение их входных данных в результате прохождения цветовой границы над входом конуса (например), синхронно начинают выставлять измененный сигнал; детали этого изменения будут зависеть от различий в цвете входной подсветки, измененных саккадическим движением глаз.[8]

С точки зрения доктора, физика Джона Медейроса,[9] исследовав внешние доли мембран колбочек и палочек, он их рассматривает как биологические волноводы, которые воспринимают световые лучи с фиксацией их в сечениях волноводов, равных размерам поперечного сечения фронта световой волны в обратном порядке прохождения их (внешних долей мембран колбочек) в жидкой среде аналогично как у сетчатки глаза, что не как в обычных оптических волноводах в воздухе. (Связано с влиянием показателей преломления сред). Вообще все колбочки функционально одинаковы, но воспринимая лучи света, каждая колбочка оппонентно выделяет один из основных лучей RGB, который застревает в сечении внешней конусной мембраны, равное поперечному сечению основного захваченного луча из RGB (откуда трихроматизм). Выделив красный луч (L), колбочка станет красной и т. д. Так мы получаем систему RGB (S,M,L). При этом колбочка выделяет соответствующий цвет фотопигмента на базе белков опсин.

Максимальная ответная реакция человеческих цветных экстерорецепторов изменяется даже среди людей с «нормальным» цветным зрением;[10]. Среди обитателей животного мира (не человекоподобных) это полиморфное изменение еще большее, и это может вполне быть адаптивным[11].

В последние годы на базе гистологического исследования (например, см. Цветное зрение у птиц), на основании которого при проведённой флюоресцентной микроскопии колбочек сетчатки, получены уникальные данные исследований 2006—2009 г.г[12][13].

Рис.3,Интервалы между фоторецепторами сетчатки цыплёнка в блоках, образующих мозаику сетчатки[14]

На основании них, например (см. Цветное зрение у птиц), доказано, что восприятие света и цвета основано на работе фоторецепторов сетчатки, состоящей из мозаики блоков («ячеек») с разным количеством колбочек, которые воспринимают основные монохроматические лучи спектра света предметной точки индивидуально в зависимости от строения сетчатки. Например, у птиц мозаика сетчатки состоит блоков, содержащих систему колбочек «четырехроматик» (четыре колбочки), у человека —"трихроматик" (три колбочки). (см. рис.3а,6). То есть в каждом блоке мозаики сетчатки могут содержаться по три, четыре, пять и т. д. колбочек, воспринимающих специализировано лучи на базе RGB.

Например, из условия наличия 6 млн колбочек в жёлтом пятне (у человека), на площади 6 мм², которые воспринимают цвет, можно на базе известных данных показать, что одна колбочка не в состоянии выдать нужную информацию цветов, сфокусированной на сетчатку предметной точки. Известно, что разрешающая способность нормального глаза при чтении с расстояния 250 мм находитя в пределах 0,072-0,200 мм и в зависимости от освещённости и индивидуума, примем среднестатистическую величину оценок разрешающей способности оптических приборов, среднестатистических групп взрослых людей, проходящих тестирование (водителей транспортных средств, военнослужащих и т. д.) с показателем 0,0896мм (При остроте зрения 0,8 (cм. Острота зрения человека). Основное количество фоторецепторов жёлтого пятна в центре сетчатки (~6млн) имеет площадь ~ 5,6-6 мм², (то есть оптическое изображение содержит 1000000 (1мгп) разных цветовых точек), где: расстояние между одноимёнными точками (фоторецепторами или «пикселами») равно примерно 3-4мкм(диаметральный наибольший размер конуса основания мембраны колбочки). Рассматриваемые визуально, например, две предметные точки с просветом между ними в виде облачков, кружков нерезкости с просветом, равный диаметру кружка нерезкости, которые глаз чётко видит.

Острота зрения человека[править]

 → Острота зрения человека

Схема фокусирования и восприятия предметной точки с остротой зрения 1,0

При этом из условия разрешающей способности глаза (остроты зрения) резкое восприятие возможно при остроте зрения 1,0, когда расстояние между двумя точками с просветом между ними равно 0,0725 мм. Откуда, каждую точку следует принять как площадь круга или квадрата со стороной 0,0725 мм. А это значит, что в границах каждой предметной «точки» — квадрата со стороной 0,0725 мм расположено бесконечное множество монолучей сочетаний RGB, которые накрывают блок RGB мембраны колбочки размером ≈7мкм и которые трансдукцируются в один выходной сигнал, идущий через жировую капельку в головной мозг. Каждая предметная точка в границах, например, квадрата со стороной 0,0725 мкм при резком видении воспринимается блоком RGB с просветом между любыми точками также 0,0725 мкм. И при визуальном зрении любого изображения, скажем, две соседние предметные точки с просветом воспринимаются мин. двумя блоками RGB, то есть шестью колбочками. Как видим налицо происходит процесс оппонентного восприятия изображения при цветном зрении. Одна колбочка, и блок трёх одинаковых колбочек не в состоянии оппонентно оценить палитру цветов RGB. [Замечание необходимое.]

Фоточувствительные нервные клетки[править]

 → Экстерорецепторы сетчатки глаза

 → Фоточувствительные клетки сетчатки ipRGC

Фоторецепторные клетки ганглиозного слоя сетчатки глаза (RGC — Retinal ganglion cell) (см. рис.4/2) — вид фоточувствительных ячеек (не колбочки и не палочки), которые относятся к сетчатке глаза[15].

  • pRGC (Retinal ganglion cell) — все фоточувствительные нервные клетки;
  • ipRGC — фоточувствительные нервные клетки, относящиеся только к сетчатке глаза.
Виды фоторецепторов сетчатки:

Цветовые различия между цветами[править]

 → Измерение цвета

Рис.4/1,Нахождение величины координат дельта D(ΔE)
Рис.5,Определяемые величины различий яркости, насыщенности, различий в цвете

Цветовые пространства L*a*b* и L*u*v* (см. рис.4/1) обладают преимуществом в представлениях цветовых различий, для равнорасположенных случаев при восприятии цветов одноимённых, но представленных для параллелного рассмотрения в двух вариантах: образцами (отобранными цветами на базе среднестатистических данных опроса людей с нормальным зрением) — номинальными и такими же реальными образцами цветов. Это делает оценку цветовых различий между номинальными и реальными образцами более лёгкой.

Способ оценки цветовых различий двух таких вариантов является основой для оценки качества цвета. Это относится ко всем областям деятельности, производства, а также к применению цветов в первую очередь в полиграфии.

Постоянно растущие запросы к качеству цветов, к стабильности и надёжности поставляемых красок в соответствии с принятыми нормативами, идентификации воспроизведения цветов разными производителями обеспечиваются специальными процессами и современной технологией измерения.

Количество цветовых различий определяется с помощью величин «дельта» — D (на рис. 4 это — (ΔE)). Определяемые величины D являются разницей между номинальными и реальными значениями. Все величины измерения цвета могут выражаться как значения приращений D. Пример: (рис. 5)

В данном случае важную роль играет отбор образцов цветов, при котором человеческий (субъективный фактор) является главным. Цвет до момента его стандартизации существует только в ощущениях, и работа всех разделов зрительной системы связаны с генетическими кодами, которые у каждого индивидуума свои, но в среднем одинаковы. Например, есть мнение, что женщины в отличие от мужчин воспринимают цвета одинаковых образцов иначе. В производственной деятельности (полиграфии) субъективный фактор мешает и поэтому он отходит на задний план.

См. также[править]

Источники[править]

  1. http://en.wikipedia.org/wiki/Cone_cell
  2. http://en.wikipedia.org/wiki/Color_vision
  3. Натанс, Джереми; Томас, Дарси Hogness, Давид Сергеевич (11 Апреля, 1986). «Молекулярная Генетика Человека Цветового Зрения: Гены, кодирующие Синие, Зеленые и Красные, Пигменты». Наука 232 (4747): 193—202. Bibcode:1986Sci…232 193N… doi:10.1126/science.2937147. JSTOR 169687. PMID 2937147.
  4. Нейтц Дж., Якобс GH (1986). «Полиморфизм длинноволнового конуса в нормальное цветовое зрение человека». Природа 323 (6089): 623-5. Bibcode:1986Natur.323 623N… doi:10.1038/323623a0. PMID 3773989.
  5. Jacobs GH (январь 1996 года). «Предстоятель photopigments приматов и цветового зрения». Proc. Natl. Acad. Sci. США 93 (2): 577-81. Bibcode:1996PNAS…577J 93… doi:10.1073/pnas.93.2.577. PMC 40094. PMID 8570598.
  6. http://en.wikipedia.org/wiki/Color_vision
  7. http://www.conesandcolor.net/_F_CSM.htm
  8. http://www.conesandcolor.net/_F_CSM.htm
  9. http://www.conesandcolor.net/_F_CSM.htm
  10. Neitz J, Jacobs GH (1986). «Polymorphism of the long-wavelength cone in normal human colour vision». Nature 323 (6089): 623-5. doi:10.1038/323623a0. PMID 3773989. http://www.nature.com/nature/journal/v323/n6089/abs/323623a0.html.
  11. Jacobs GH (January 1996). «Primate photopigments and primate color vision». Proc. Natl. Acad. Sci. U.S.A. 93 (2): 577-81. doi:10.1073/pnas.93.2.577. PMID 8570598.
  12. Goldsmith, Timothy H. «What birds see» (PDF). 69-75. Scientific American (July, 2006). Проверено 29 марта 2010.
  13. Wassle H, Puller C, Muller F, Haverkamp S (2009) Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 29: 106—117.
  14. Goldsmith, Timothy H. (July 2006). «What birds see» (PDF). Scientific American: 69-75. http://www.csulb.edu/labs/bcl/elab/avian%20vision_intro.pdf
  15. Wong, Kwoon Y.; Dunn, Felice A.; Berson, David M. (22 December 2005). «Photoreceptor Adaptation in Intrinsically Photosensitive Retinal Ganglion Cells» (HTML: Full text). Neuron 48: 1001—1010. doi:10.1016/j.neuron.2005.11.016. http://www.neuron.org/content/article/fulltext?uid=PIIS0896627305009645. Retrieved 2008-05-11.
 
Основные цвета
(список)
Радуга

 Красный   Оранжевый   Жёлтый   Зелёный   Голубой   Синий   Фиолетовый 

Оттенки серого

 Белый   Серый   Чёрный 

HTML

 black   silver   grey   white   red   maroon   purple   fuchsia   green   lime   olive   yellow   orange   blue   navy   teal   aqua 

См. также

Основные цвета Дополнительные цвета Спектральные цвета Цветовая модель

Категория Цвет