Коэффициент корреляции Фехнера

Материал из Циклопедии
Перейти к: навигация, поиск

Коэффициент корреляции (знаков) Фехнера — это некоторое число от -1 до 1, характеризующее степень согласованности направлений отклонений значений зависимой и независимой случайных величин.

[править] Обозначения:

n — число наблюдений;

xii–ое наблюдаемое значение независимой случайной величины;

yii–ое наблюдаемое значение зависимой случайной величины;

С — число совпадений знаков отклонений наблюдаемых значений случайных величин от их средних значений;

Н — число несовпадений знаков отклонений наблюдаемых значений случайных величин от их средних значений;

KФ — коэффициент корреляции (знаков) Фехнера.

[править] Формула

[math]К_\text{Ф}=\frac{1}{n}\sum\limits_{i=1}^n sign(x_i - \bar x) sign(y_i - \bar y) \Leftrightarrow К_\text{Ф}=\frac{C-H}{C+H}[/math], где
[math]\bar x = \frac{1}{n}\sum\limits_{i=1}^n x_i, \ \bar y = \frac{1}{n}\sum\limits_{i=1}^n y_i, \ n=C+H[/math]

[править] Другие формулы:

Персональные инструменты
Пространства имён

Варианты
Действия
Навигация
Инструменты