Среднее линейное отклонение непрерывной случайной величины

Материал из Циклопедии
Перейти к: навигация, поиск

Среднее линейное отклонение — это числовая характеристика случайной величины, равная средней модулей отклонений этой величины от средней.

Содержание

[править] Обозначения:

X — случайная величина;

fX(x) — дифференциальная функция распределения — функция плотности вероятности;

M(X)средняя — математическое ожидание;

d(X) — среднее линейное отклонение.

[править] Формулы:

[math]d(X)=\int\limits_{-\infty}^\infty\left|x-\int\limits_{-\infty}^\infty xf_X(x)dx\right|f_X(x)dx \Leftrightarrow[/math]
[math]\Leftrightarrow d(X)=\int\limits_{-\infty}^\infty\left|x-M(X)\right|f_X(x)dx \Leftrightarrow[/math]
[math]\Leftrightarrow d(X)=M\left(\left|X-M(X)\right|\right)[/math]

[править] См. также

[править] Другие формулы:

Персональные инструменты
Пространства имён

Варианты
Действия
Навигация
Инструменты