Циклопедия скорбит по жертвам террористического акта в Крокус-Сити (Красногорск, МО)

Рецептор

Материал из Циклопедии
Перейти к навигации Перейти к поиску
Рис. 1. 1) Лиганды;
2) Рецепторы;
3) Вторичные посланники.
Это примеры мембранных рецепторов.[1]

Рецептор — (лат. receptor — приёмник, получатель) — объединение из нервных окончаний дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей.

Пример — фоторецепторных клеток сетчатки глаза, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс.

Введение[править]

Рецептор — воспринимающий элемент; чаще всего — в биологии. Это сложное образование, состоящие из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс — волна возбуждения, которая распространяется по нервному волокну и служит для передачи информации от периферических рецепторных (чувствительных) окончаний к нервным центрам, внутри центральной нервной системы и от неё к исполнительным аппаратам — мышцам и железам.[2] Они состоят из «терминалей», дендрита нейронов, глий, специализированных образований межклеточного вещества и специализированных клеток иных тканей. В некоторых рецепторах (например, вкусовых и слуховых рецепторах человека) раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или видоизмененными нервными клетками (чувствительные элементы сетчатки), которые не генерируют нервных импульсов, а действуют на иннервирующие их нервные окончания, изменяя секрецию медиатора. В других случаях единственным клеточным элементом рецепторного комплекса является само нервное окончание, часто связанное со специальными структурами межклеточного вещества (например, тельце Пачини).

Сенсорная рецептия[править]

 → Сенсорная рецептия

Рецепцией называют процесс восприятия и трансформации (преобразования) энергии внешнего раздражителя в энергию нервного импульса или в сложную последовательность внутриклеточных процессов. Она рассматривается как:

  • Клеточная и сенсорная рецепция
  • Классификация и строение сенсорных рецепторов
  • Преобразование энергии в сенсорном рецепторе
  • Свойства рецепторов
  • Рецептивное поле.

Формы и действия рецепторов[править]

Рис. 1t.Экстерорецепторы, Трансмембранная передача сигнала — свойство мембран — способность воспринимать и передавать внутрь клетки сигналы из внешней среды (см. Мембраны колбочек и палочек сетчатки глаза). Рецепторы:
E = extracellular — Внеклеточное место — наружный сегмент мембраны колбочки, заполненный мембранными полудисками, образованными плазматической мембраной, и отделившимися от неё (обращённая к свету, наружная часть столбика из полудисков — постоянно обновляется, за счет фагоцитоза «засвеченных» полудисков клетками пигментного эпителия, и постоянного образования новых полудисков, в теле фоторецептора);
P = plasma плазма в биологии (обработка и передача сигнала) — внутренняя поверхность рецептора;
I = intracellular — Внутриклеточное место — клеточная мембрана (см. Клеточный рецептор).
Рис. 3. Нейрон состоит из одного аксона, тела и нескольких дендритов. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.
Как потенциал действия перемещается вдоль аксона, происходит изменение полярности через мембраны. Отель na+ и K+ охраняющая ионные каналы, открываются и закрываются как мембраны достигает порогового потенциала, в ответ на сигнал от другого нейрона. В начале потенциала действия на Nа+ каналов и na+ движется внутрь аксона, вызывая деполяризацию. Реполяризация происходит, когда на K+ каналы и K+ выходит из аксона. Это создает изменение полярности между вне клетки и внутри. Импульс проходит вниз по аксону в одном направлении, в терминале аксона, где это сигналы касаются других нейронов.
Рис. 1. Схема распределения зарядов по разные стороны мембраны возбудимой клетки в спокойном состоянии (A) и при возникновении потенциала действия (B) (см. объяснения в тексте Потенциал действия).

Формы и действия рецепторов изучены рентгеновской кристаллографией, двойной polarisation интерферометрией, компьютерным моделированием, и исследованияи функции структуры, которые продвинули понимание действия препарата на обязательных участках рецепторов. Коррелят отношений деятельности структуры вызвал конформационные изменения с биомолекулярной деятельностью, и изучен, используя динамические методы, типа круглого дихроизма и двойной polarisation интерферометрии.

Трансмембранное место — receptor: E = extracellular; место I = intracellular; мембрана P = plasma. В зависит от их функций и лигандов, которые могут идентифицировать несколько типов рецепторов (см. рис.1t):

  • Некоторые белки рецептора[3][4] — периферийные мембранные белки.
  • Много гормонов и рецепторов медиатора — трансмембранные белки: трансмембранные рецепторы вложены в двойной слой фосфолипида мембран ячейки, которые позволяют активацию троп трансдукции сигнала в ответ на активацию обязательной молекулой, или лигандом.
    • Рецепторы Metabotropic соединены с белками Г и затрагивают ячейку косвенно через ферменты, которые управляют каналами иона.
    • Рецепторы Ionotropic (также известные как каналы иона лиганда-gated) содержат центральную пору, которая открывается в ответ на закрепление лиганда.
  • Другой главный класс рецепторов — внутриклеточные белки, типа тех, которые для стероида и intracrine гормональных рецепторов пептида. Эти рецепторы часто могут входить в ядро ячейки и модулировать генное выражение в ответ на активацию лигандом.[5]

Мембранные рецепторы изолированы от мембран ячейки. В связи со сложными процедурами извлечения, используются растворители, моющие средства, и/или очистка близости.[6]

Стимулами для разных рецепторов могут служить свет, механическая деформация — изменение размеров, химические вещества, изменения температуры, а также изменения электрического и магнитного поля. В рецепторных клетках (будь то непостредственно нервные окончания или специализированные клетки) соответствующий сигнал изменяет конформацию чувствительных молекул-клеточных рецепторов, что приводит к изменению активности мембранных ионных рецепторов и к изменению мембранного потенциала клетки. Если воспринимающей клеткой является непосредственно нервное окончание (так называемые первичные рецепторы), то происходит деполяризация мембраны с последующей генерацией нервного импульса. Специализированные рецепторные клетки вторичных рецепторов могут как де-, так и гиперполяризоваться. В последнем случае изменение мембранного потенциала ведет к уменьшению секреции тормозного медиатора, действующего на нервное окончание и, в конечном счете, все равно к генерации нервного импульса. Напаример, вызвать генерацию нервного импульса может фотон, попавший на мембрану клетки находящейся в фоточувствительном слое сетчатки.

В качестве клеточных рецепторных молекул могут выступать либо механо-, термо- и хемочувствительные ионные каналы, либо специализированные G-белки (как в клетках сетчатки). В первом случае открытие каналов непосредственно изменяет мембранный потенциал (механочувствительные каналы в тельцах Пачини), во втором случае запускается каскад внутриклеточных реакций трансдукции сигнала, что ведет в конечном счете к открытию каналов и изменению потенциала на мембране.

Виды рецепторов[править]

Существуют несколько классификаций рецепторов:

  • По положению
    • Экстерорецепторы — расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)
    • Интерорецепторы — расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)
      • Проприорецепторы (проприоцепторы) — рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.
  • По способности воспринимать разные стимулы
    • Мономодальные — реагирующие только на один тип раздражителей (например, фоторецепторы — на свет)
    • Полимодальные — реагирующие на несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).
  • По адекватному (модальности) раздражителю
    • Хеморецепторы — воспринимают воздействие растворенных или летучих химических веществ, изменение уровня сахара в крови, рецепторы вкуса, обоняния;
    • Осморецепторы — воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды), воспринимающие изменения осмотического давления и/или солевого баланса в крови;
    • Механорецепторы или тактильные рецепторы, реагирующие на колебательные и деформационные процессы в качестве звуковых раздражителей, давления, сил тяжести, прикосновений, реагирующие на колебания воздуха, создаваемые звуковым раздражителем, содержат — рецепторы, расположенные в стенках кровеносных сосудов и реагирующие на изменение кровяного давления — барорецепторы, содержат рецепторы, воспринимающие изменения положения тела в пространстве — рецептор отолитового аппарата;
    • Фоторецепторы — биологическая структура и элемент зрительной системы живых организмов, воспринимающие видимые лучи спектра прямого и/или отражённого излучения ультрафиолетового, инфракрасного и/или иного в зависимости от характеристик органа зрительной системы, в том числе и человека);
    • Терморецепторы — воспринимают понижение (холодовые) или повышение (тепловые) температуры
    • Болевые рецепторы, стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность ноцицепторов, которя не позволяет отнести их, например, к «высокопороговым терморецепторам», состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов[7].
    • Электрорецепторы — воспринимают изменения электрического поля
    • Магнитные рецепторы — воспринимают изменения магнитного поля

Рецепторы человека[править]

  • Это нервные окончания, состоящие только из конечных ветвлений осевого цилиндра. Располагаются в эпителии. Выступают в качестве терморецепторов, механорецепторов и ноцицепторов (то есть отвечают за восприятие изменения температуры, механических воздействий и болевые ощущения. (Гистология, цитология и эмбриология).
  • И не свободные нервные окончания:
    • Тельца Пачини — инкапсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, а потому обладают грубой чувствительностью.
    • Тельца Мейснера — инкапсулированные рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, а потому обладают тонкой чувствительностью.
    • Тельца Меркеля — некапсулированные рецепторы давления. Располагаются у птиц — в дерме, у прочих позвоночных — в глубоких слоях эпидермиса. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями[8][9].
    • Тельца Руффини — инкапсулированные рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями. Реагируют также на тепло.
    • Колбы Краузе — инкапсулированные рецепторы, реагирующие на холод.
    • Рецепторы волосяных фолликулов — механорецепторы, расположенные в волосяных фолликулах и реагирующие на отклонение волоса от исходного положения[10].

Рецепторы мышц и сухожилий (проприоцепторы)[править]

  • Мышечные веретена — рецепторы растяжения мышц, бывают двух типов:
    • с ядерной сумкой;
    • с ядерной цепочкой.
  • Сухожильный орган Гольджи — рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок[править]

В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа — инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 — тельцам Паччини.

Рецепторы сетчатки глаза[править]

 → Фоторецепторные клетки сетчатки глаза

Сетчатка глаза содержит фоторецепторные клетки сетчатки глаза — палочковые и колбочковые фоточувствительные клетки, в которых имеются светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света. Все палочки содержат родопсин один и тот же светочувствительный пигмент. Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека. Колбочки с тремя пигментами опсина S,M,L), которые у каждой колбочки со своей разновидностью пигмента опсина, определяющие цветовое ощущение (зрение), а именно: S-колбочки (синий цвет), M-колбочки (зелёный цвет) и L-колбочки (красный цвет). Колбочка поэтому чувствительна к видимым длинам волн света, которые соответствуют длинам волн: коротковолновой, средней длине волны и длинной волне света RGB. При это луч света предметной точки, сфокусированный на фокальную поверхность сетчатки в виде кружка нерезкости диаметром 7-9 мкм, накрывает блок трёх кобочек RGB, которые оппонентно выделяют основной базовый луч S,M,L в виде биосигнала, отправляемый по зрительным нервам в мозг. Всё это происходит под контролем ганглиозных клеток ipRGC и мозга постоянно. То есть происходит жёсткий контроль случайного восприятия синих и УФ, фокусируемых лучей с длиной волны менее 498 нм на фокальную поверхность сетчатки, попадаемых на колбочки (работа фильтра). Откуда и пошёл трихроматизм (три цвета).[11][12]

Следует заметить, что это может сделать только биохимическая зрительная система как глаз, и созданный природой биорецептор ещё не скоро можно заменить механическим аналогом. Проводимые работы сторонниками нелинейной теории зрения на бозе робота — глаза в виде колориметра с 1975 года не могут получить и противопоставить результаты, опровергающие доказанный принцип трихроматизма при цветном зрении. (Палочка в отличие от колбочек, имеющих разновидности пигмента опсин, содержит постоянный пигмент родопсин и не способна воспринимать лучи света с длиной волны более 498 нм, и работать с колбочками M/L вместо синей колбочки-S). (См. Биохимия зрения и свободно-радикальное окисление клеток сетчатки глаза).

Зрение и оптика[править]

Обоняние[править]

Вкус[править]

Общая физиология[править]

Лиганд (биохимия)[править]

 → Лиганд (биохимия)

Миоглобин (голубой) со связанным лигандом — гемом (оранжевый). Данные из Protein Data Bank
Рис.4. Работа лиганда.

Лиганд (биохимия) (Биохимия и Фармакология) — это химическое соединение (часто малая молекула), которое образует комплекс (в химии) с той или иной биомолекулой (чаще белком, например клеточным рецептором, но иногда, например, с ДНК) и производит, в результате такого связывания, те или иные биохимические, физиологические или фармакологические эффекты. В случае связывания лиганда с белком, лиганд обычно является малой сигнальной молекулой, связывающейся со специфическим участком связывания на белке-мишени (например, на рецепторе), (смотри работу лиганда рис.4.). В случае связывания лиганда с ДНК, лиганд обычно также является малой молекулой или ионом,[13] или белком[14] который связывается с двойной спиралью ДНК.[15]

Научные исследования[править]

Научные организации, занимающиеся исследованиями в данной области
Николай Константинович Кольцов (1872—1940).

Виды некоторых рецепторов и их данные[править]

Cм. в таблице:

Типы рецепторов и их данные
Вид раздражителя Тип рецептора Комментарии
Электрическое поле Ампула Лоренцини[16] и другие типы Имеются у рыб, круглоротых, амфибий, а также у утконоса и ехидны
Химическое вещество Хеморецептор Химический сигнал преобразуется в потенциал действия. Хеморецепторы (вкуса, запаха, феромонов) могут быть очень различны по своей природе, и потому по-разному реагировать на одно и то же вещество — в зависимости от точки его приложения (нос, рот, кожа и т. п.).
Влажность

ПММА

Гигрорецептор Относятся к осморецепторам или механорецепторам. Располагаются на антеннах и ротовых органах многих насекомых
Механическое воздействие. Механорецептор У человека имеются в коже (экстероцепторы кожи) и внутренних органах (барорецепторы, проприоцепторы)
Давление. Барорецептор Относятся к механорецепторам
Положение тела Проприоцептор нервно-мышечные веретена, сухожильные органы Гольджи и др.
Положение тела Вестибулорецептор (или механорецепторы вестибулярного аппарата), реагируют на ускорения и вибрации при наклоне тела или головы.
Осмотическое давление Осморецептор В основном интерорецепторы; у человека имеются в гипоталамусе, а также, вероятно, в почках, стенках желудочно-кишечного тракта, возможно, в печени. Существуют данные о широком распространении осморецепторов во всех тканях организма
Свет, Цвет Фоторецептор,Экстерорецептор Участвуют в восприятии света и цвета
Температура Терморецептор Реагируют на изменение температуры. У человека они имеются в коже и в гипоталамусе.
Повреждение тканей Ноцицептор Болевые рецепторы — свободные нервные окончания немиелинизированных волокон типа C или слабо миелинизированных волокон типа Aδ.
Магнитное поле Магнитные рецепторы Точное расположение и строение неизвестны, наличие у многих групп животных доказано поведенческими экспериментами.

См. также[править]

Источники[править]

  1. https://en.wikipedia.org/wiki/Receptor_(biochemistry)
  2. http://femto.com.ua/articles/part_2/2483.html
  3. Hall, JE (2016). Гайтон и Холл Учебник медицинской физиологии . Филадельфия, штат Пенсильвания: Эльсейер Сондерс. pp. 930—937. ISBN 978-1-4557-7005-2 .
  4. Нельсон DL, Кокс М. М. (2005). Принципы биохимии Лехнингера (4-е изд.). Нью-Йорк, Нью-Йорк: WH Freeman и Company.
  5. Hall, JE (2016). Гайтон и Холл Учебник медицинской физиологии . Филадельфия, штат Пенсильвания: Эльсейер Сондерс. pp. 930—937. ISBN 978-1-4557-7005-2 .
  6. http://en.wikipedia.org/wiki/Receptor_(biochemistry)
  7. David Julius and Allan Basbaum. Molecular mechanisms of nociception. Nature 413, 203—210 (13 September 2001)
  8. Halata Z., Grim M., Baumann K. I.  Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: Review and new results // The Anatomical Record, 2003, 271A (1). — P. 225—239. — DOI:10.1002/ar.a.10029.
  9. Halata Z., Baumann K. I., Grim M.  Merkel Nerve Endings Functioning as Mechanoreceptors in Vertebrates // The Merkel Cell: Structure — Development — Function — Cancerogenesis / Baumann K. I., Halata Z., Moll I. (Eds.). — Berlin, Heidelberg: Springer Verlag, 2003. — xiv + 248 p. — ISBN 978-3-642-05574-4. — P. 3—6.
  10. Paus R., Cotsarelis G.  The Biology of Hair Follicles // The New England Journal of Medicine, 1999, 341 (7). — P. 491—497. — DOI:10.1056/NEJM199908123410706.
  11. http://www.conesandcolor.net/home.htm
  12. Schacter,Gilbert, Wegner, «Psychology», New York: Worth Publishers,2009.
  13. Teif V.B. (2005). «Ligand-induced DNA condensation: choosing the model». Biophysical Journal 89 (4): 2574–2587. DOI:10.1529/biophysj.105.063909. PMID 16085765.
  14. Teif VB, Rippe K. (2010). «Statistical-mechanical lattice models for protein-DNA binding in chromatin.». Journal of Physics: Condensed Matter 22 (41): 414105. DOI:10.1088/0953-8984/22/41/414105. PMID 21386588.
  15. https://en.wikipedia.org/wiki/Ligand_(biochemistry)
  16. https://en.wikipedia.org/wiki/Ampullae_of_Lorenzini
 
По положению

Экстерорецепторы | Интерорецепторы | Проприорецепторы

По способности воспринимать разные стимулы

Мономодальные | Полимодальные | Тельце Гербста | Тельце Грандри

По адекватному (Сенсорная модальность) раздражителю

Хеморецепторы | Осморецепторы | Механорецепторы (Тактильные) | Фоторецепторы | Терморецепторы | Болевые рецепторы | Электрорецепторы | Магнитные рецепторы | Тельце Пачини | Тельце Мейснера | Тельца Меркеля | Тельце Руффини | Лиганд (биохимия) | Сенсорная рецептия | Сенсорная модальность |

 
Нейроны
(Серое вещество)

Перикарион · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты) · Конус роста · Аксонный транспорт · Валлерова дегенерация

Дендрит (Вещество Ниссля, Дендритный шипик, Апикальный дендрит, Базальный дендрит) · Дендритная пластичность · Дендритный потенциал действия

типы: Биполярные нейроны · Униполярные нейроны · Псевдоуниполярные нейроны · Мультиполярные нейроны · Пирамидальный нейрон · Звёздчатый нейрон · Клетка Пуркинье · Гранулярная клетка · Интернейрон · Клетка Реншоу

Афферентный нерв/
Сенсорный нейрон

GSA · GVA · SSA · SVA · Нервные волокна (Мышечные веретёна (Ia), Нервно-сухожильное веретено (Ib), II или Aβ-волокна, III или Aδ-волокна, IV или C-волокна)

Эфферентный нерв/
Моторный нейрон

GSE · GVE · SVE · Верхний мотонейрон · Нижний мотонейрон (α мотонейроны, γ мотонейроны)

Синапс

Химический синапс · Нервно-мышечный синапс · Эфапс (Электрический синапс) · Нейропиль · Синаптический пузырёк

Сенсорный рецептор

Тельце Мейснера · Тельце Меркеля · Тельце Пачини · Тельце Руффини · Нервно-мышечное веретено · Свободное нервное окончание · Обонятельный нейрон · Фоторецепторные клетки · Волосковые клетки · Вкусовая луковица

Нейроглия

Астроциты (Радиальная глия) · Олигодендроциты · Клетки эпендимы (Танициты) · Микроглия

Миелин
(Белое вещество)

ЦНС: Олигодендроциты
ПНС: Шванновские клетки (Нейролемма · Перехват Ранвье/Межузловой сегмент · Насечка миелина)

Соединительная ткань

Эпиневрий · Периневрий · Эндоневрий · Пучки нервных волокон · Мозговые оболочки: твёрдая, паутинная, мягкая